基于NSGA-Ⅲ的船用柴油机模型自适应修正方法研究
Research on Adaptive Correction Method for Marine Diesel Engine Model Based on NSGA-Ⅲ
船用柴油机长期使用中由于故障和零部件老化造成的性能衰退会使柴油机模型与真实柴油机性能不匹配,从而严重影响柴油机的性能寻优控制,为解决此问题提出了一种柴油机模型自适应修正方法,首先通过在GT-POWER软件中搭建的柴油机预测模型得到的数据建立了二阶响应面模型,然后利用第三代非支配排序遗传算法(NSGA-Ⅲ)对二阶响应面模型的输入参数进行修正,使二阶响应面模型的输出性能能够与柴油机预测模型状态变化后的输出性能相匹配。验证结果表明,NSGA-Ⅲ算法不仅能对二阶响应面模型的输入参数变化准确识别和修正,而且自适应修正后得到的最优解中各性能参数偏移误差都在0.9%以内。实现了二阶响应面模型的自适应修正,证明了所提修正方法的可行性。
The performance degradation caused by faults and aging of components in the long-term use of marine diesel engines can cause mismatch between the diesel engine model and the actual diesel engine performance, which seriously affects the performance optimization control of diesel engines. To solve this problem, a diesel engine model adaptive correction method is proposed. Firstly, a second-order response surface model is established based on the data obtained from the diesel engine prediction model built in GT-POWER software, Then, the third generation non dominated sorting genetic algorithm (NSGA Ⅲ) is used to modify the input parameters of the second-order response surface model, so that the output performance of the second-order response surface model can match the output performance of the diesel engine prediction model after state changes. The validation results indicate that the NSGA - III algorithm can not only accurately identify and correct the input parameter changes of the second-order response surface model, but also adaptively correct the optimal solution with performance parameter offset errors within 0.9%. The adaptive correction of the second-order response surface model has been achieved, demonstrating the feasibility of the proposed correction method.
闫玉生;刘岱;张健;
哈尔滨工程大学 动力与能源工程学院,哈尔滨150001;哈尔滨工程大学 动力与能源工程学院,哈尔滨150001;中国船舶集团有限公司第七一一研究所,上海 20110;
TK422
marine diesel engine adaptive correction NSGA-III correction method
1-8 / 8
评论