粗糙壁面上纳米液滴的蒸发特性

Evaporation characteristics of nanodroplets on rough surfaces

来源:中文会议(科协)
中文摘要英文摘要

为了更好地解决内燃机燃油湿壁问题,对燃油撞壁后的蒸发过程进行主动控制,采用分子动力学方法研究了壁面温度、润湿性及粗糙结构对液滴蒸发过程的影响规律。结果表明:液滴在具有不同温度及微结构表面上的蒸发过程中,其形态变化较复杂。随着固液作用系数的降低,固液界面的热阻增加,由液相转变为气相的液滴分子的数量明显减少。在较大的固液作用系数条件下,随着壁面温度的升高,液滴分子总能量增加。随着固液作用系数的降低,壁面温度对液滴分子与壁面原子间能量的影响减弱。当固液作用系数较低时,在具有不同微结构的壁面上的液滴分子的总能量的排序为:光滑壁面>凹坑状壁面>网格状壁面>凸台状壁面>二级凸台状壁面。

To better solve the wall-wetting problem in internal combustion engines and actively control the evaporation processes of wall-impinging fuel droplets, molecular dynamics (MD) method was used to study the influence of surface temperature, wettability and rough structures on the evaporation processes of droplets. The results show that the morphological changes of droplets are complex during the evaporation processes on surfaces with different temperatures and microstructures. As the solid-liquid interaction coefficient decreases, the thermal resistance of the solid-liquid interface increases, and the number of droplet molecules that change from the liquid phase to the vapor phase decreases significantly. Under the conditions of larger solid-liquid interaction coefficients, the total energy of droplet molecules increases with the increase of surface temperatures. With the decrease of the solid-liquid interaction coefficients, the effects of the surface temperature on the energy between the dropletmolecules and the wallatoms weaken. When the solid-liquid interaction coefficient is low, the order of the total energy of the droplet molecules on the surfaces with different microstructures is smooth surface > pit-shaped surface > grid-shaped surface > boss-shaped surface > secondary boss-shaped surface.

陈艳玲;郭亮;孙万臣;蔡宁宁;宣熔;王涵;张峻峰;

吉林大学汽车仿真与控制国家重点实验室,长春130025;吉林大学汽车仿真与控制国家重点实验室,长春130025;吉林大学汽车仿真与控制国家重点实验室,长春130025;吉林大学商学与管理学院,长春130012;吉林大学汽车仿真与控制国家重点实验室,长春130025;吉林大学汽车仿真与控制国家重点实验室,长春130025;吉林大学汽车仿真与控制国家重点实验室,长春130025;

2023交通能源与智能动力大会

TK421

纳米液滴 壁面温度 润湿性 微结构 蒸发过程 分子动力学

nanodroplet surfacetemperature wettability microstructure evaporation process molecular dynamics

1-12 / 12

评论

上述内容所涉观点、意见仅代表作者,与国家学术会议平台无关。

国家学术会议平台已取得上述相关成果授权,未经允许,任何单位和个人不得转载、复制或用作他途,一经发现,相关法律后果自行承担,国家学术会议平台保留向相关侵权人依法追究法律责任的权利。