面向动力需求的汽油机性能与油品组分关联性分析

Correlation analysis of gasoline engine performance and oil product composition based on power demands

来源:中文会议(科协)
中文摘要英文摘要

为探究影响内燃机动力性能的因素和影响途径,基于全参数可控特种发动机试验平台开展了稳态工况下的发动机性能试验,提出基于BP神经网络的发动机动力性能参数关联性研究。确定以燃烧相位、燃烧持续期、累计放热量、平均指示压力等典型的燃烧过程参数为中间层因变量,将指标进行归一化处理,建立基于BP神经网络的输入层(发动机控制参数、油品)-中间层(燃烧过程参数)-输出层(发动机输出功率)的关联性分析模型,以相关系数评价各指标参数间的相关性。研究表明,与发动机性能相关性最强的输入层自变量为点火提前角,相关系数为0.946;五种油品与发动机性能的相关系数均小于0.2,具有极弱的相关性。

In order to explore the factors and ways of affecting the dynamic performance of internal combustion engines, the engine performance tests under steady-state conditions were carried out based on a full-parameter controllable special engine test platform, and a correlation study of engine dynamic performance parameters based on BP neural network was proposed. Determine the typical combustion process parameters such as ignition advance angle, air-fuel ratio, combustion phase, and combustion duration as dependent variables in the middle layer, normalize the indicators, and establish an input layer based on BP neural network (engine control parameters, oil quality, etc.) -intermediate layer (combustion process parameters)-output layer (engine output power) correlation analysis model, the correlation coefficient is used to evaluate the correlation between each index parameter, which provides a reference for reverse fuel design oriented to internal combustion engine mechanical performance. The research shows that the input layer independent variable with the strongest correlation with the engine performance is the ignition advance angle, and the global correlation coefficient is 0.946; the correlation coefficients between the five oil products and the engine performance are all less than 0.2, which has a very weak correlation.

李银隆;韩永强;孙运才;徐林勋;孙兴玉;

吉林大学 内燃机系,长春 130025;吉林大学 内燃机系,长春 130025;山东京博新能源控股发展有限公司,山东 256500;山东京博新能源控股发展有限公司,山东 256500;山东京博新能源控股发展有限公司,山东 256500;

2023交通能源与智能动力大会

TK464

油品组分 燃烧参数 神经网络 关联性分析

fuel components Combustion characteristics neural net correlation analysis

1-7 / 7

评论

上述内容所涉观点、意见仅代表作者,与国家学术会议平台无关。

国家学术会议平台已取得上述相关成果授权,未经允许,任何单位和个人不得转载、复制或用作他途,一经发现,相关法律后果自行承担,国家学术会议平台保留向相关侵权人依法追究法律责任的权利。