转炉吹炼终点碳锰预测数据驱动模型
Data Driven Models of Carbon and Manganese Content Prediction at Blowing End Point in Converters
针对转炉吹炼终点碳和锰,采用大数据与机器学习算法LGBM(Light Gradient Boosting Machine,轻量梯度提升机),建立了数据驱动的转炉吹炼终点碳、锰含量预测模型,模型输入变量包括铁水成分、铁水重量、废钢重量、耗氧量和造渣剂加入量,采用学习曲线调参方法确定模型的超参数最优值。研究结果表明,在大数据的前提下,数据分布均衡有利于提高机器学习算法建立的数据驱动模型的预测效果。在(-0.025%,0.025%)、(-0.020%,0.020%)和(-0.015%,0.015%)的误差范围,终点碳预测模型的命中率分别为 95.43%、94.06%和 89.73%;终点锰预测模型的命中率分别为 97.00%、95.69%和 90.61%。终点锰预测模型的均方根误差(RMSE)与终点碳预测模型的相近,但其决定系数(R2)比终点碳预测模型的高,更接近 1。
For the carbon and manganese content at the end point of converter converting,data driven prediction models for carbon and manganese content at the end point of converter blowing were established by using big data and machine learning algorithm LGBM(Light Gradient Boosting Machine).The input variables of the model include the composition of hot metal,the weight of hot metal,the weight of scra,oxygen consumption and the addition amount of slagging formers.The learning curve parameter adjustment method was used to determine the optimal hyperparameter values of the two models.The research results indicate that under the premise of big data,balanced data distribution is beneficial for improving the predictive performance of data-driven models established by machine learning algorithms.Within the error range of(-0.025%,0.025%),(-0.020%,0.020%),and(-0.015%,0.015%),the hit rates of the endpoint carbon prediction model are 95.43%,94.06%,and 89.73%,respectively;The hit rates of the endpoint manganese prediction model were 97.00%,95.69%,and 90.61%,respectively.The root mean square error(RMSE)of the endpoint manganese prediction model is near to that of the endpoint carbon prediction model,but its coefficient of determination(R2)is higher and closer to 1 than that of the endpoint carbon prediction model.
洪科;于学渊;钟良才;史秀全;高威;赵阳;
东北大学冶金学院,沈阳 110004##东北大学多金属共生矿生态化冶金教育部重点实验室,沈阳 110004;建龙集团抚顺新钢铁炼钢厂,辽宁 抚顺 113001;东北大学冶金学院,沈阳 110004##东北大学多金属共生矿生态化冶金教育部重点实验室,沈阳 110004;建龙集团抚顺新钢铁炼钢厂,辽宁 抚顺 113001;建龙集团抚顺新钢铁炼钢厂,辽宁 抚顺 113001;建龙集团抚顺新钢铁炼钢厂,辽宁 抚顺 113001;
converter blowing endpoint carbon endpoint manganese data-driven model prediction
167-174 / 8
评论