轻型汽车实际行驶排放普适性严苛场景的统计识别
Statistical Identification of Universal Harsh Scenarios for RealDriving Emissions of Light Vehicles
基于大量轻型燃油车辆实际行驶排放(RDE)试验数据,以300秒为窗口时间长度,采用时序移动平均窗口法将RDE试验逐秒采样数据划分为大量类行程数据窗口子集。再运用因子分析方法将影响RDE试验的多因素指标缩减为行程动力学因子和地形因子两个指标,并使用聚类分析统计类行程数据窗口特征,识别和提取具有普适性和代表性的排放严苛数据窗口,该方法能够消除RDE试验中偶然性异常高排放值的干扰,具有较高的置信度,最终形成41个具有规范性的实际行驶排放严苛场景工况。实际行驶排放严苛场景工况的速度轮廓和地形轮廓数据可在试验室底盘测功机上进行精确再现,从而支持车辆实际行驶排放的试验室校准。
Based on a large amount of light-duty fuel vehicle real driving emissions (RDE) test data, the RDE test second-by-second sampling data were divided into a large number of class trip data window subsets using the time-series moving average window method with a window time length of 300 seconds.Then, factor analysis was applied to reduce the multifactorial metrics affecting the RDE test to two metrics, trip dynamics factor and terrain factor, and cluster analysis was used to characterize the statistical class trip data window and to identify and extract a generalized and representative window of severe emissions data.The method is able to eliminate the interference of occasional anomalously high emission values in the RDE test with a high level of confidence, resulting in 41 prescriptive real driving emission severity scenarios.Speed profile and terrain profile data from the scenarios can be accurately reproduced on a laboratory chassis dynamometer to support laboratory calibration of real-world vehicle emissions.
薛浩洋;王坤;杜宝程;王英章;吴冬梅;付明明;张力;
重庆大学机械与运载工程学院,重庆400044;中国汽车工程研究院股份有限公司,重庆401122;中国汽车工程研究院股份有限公司,重庆401122;重庆大学机械与运载工程学院,重庆400044;重庆大学机械与运载工程学院,重庆400044;重庆大学机械与运载工程学院,重庆400044;重庆大学机械与运载工程学院,重庆400044;
U448.213
实际行驶排放 移动平均窗口法 因子分析 二阶聚类分析 排放严苛场景
real driving emissions moving average window method Factor analysis Second-order cluster analysis emission severityscenarios
1-9 / 9
评论