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Abstract: Although many prior studies have found that landscape pattern significantly affects urban heat 

environment globally, the spatially heterogeneous in the cooling effects of landscape pattern remains poorly 

understood. In addition, most previous studies have only employed a single landscape metric separately, without 

holistic consideration of the composition and con-figuration of different landscapes. Taking one of the new “stove” 

cities in China-Fuzhou City, Fujian Province, as an example, we employed the principal component analysis (PCA) 

to syn-thesize a landscape pattern comprehensive index (LPCI) composed of the four common land-scape metrics 

(i.e., aggregation index, AI; mean patch area, Area mn; largest patch index, LPI; and percentage of landscape, 

PLAND) of the three major land surfaces (i.e., water, vegetation, and impervious surface). Then, the local model 

(geographically weighted regression, GWR) was proposed to explore the spatially heterogeneous in the cooling 

effects of urban landscape. The results revealed that: (1) from 2000 to 2016, the land surface temperature (LST) 

increased by 4.262 °C, and the proportion of the urban heat island region showed an upward trend, while the urban-

heat-island ratio index (URI) increased from 0.328 to 0.457; (2) the cooling effect of different land surfaces ranked 

from high to low was: water (29.69 °C), vegetation (38.56 °C), and imper-vious surface (41.82 °C); (3) compared 

with vegetation patches, water patches had a more obvious cooling effect on the surrounding environment, with the 

cooling distance within 60–90 m for the vegetation, while reaching 120–150 m for water body; (4) the proposed 

LPCI could explain more than 80% of the information for all of the landscape metrics for all of the landscape types, 

and presented a patchy distribution in the study area; (5) the GWR results revealed that the cooling effect of the 

landscape pattern varied spatially across the study area, indicating that the config-uration of landscapes is more 

important in an urban center in alleviating urban heat environment than in an urban fringe area. The proposed 

approach provides a new understanding of the in-teraction between the landscape patterns and urban heat 

environments, providing a strong basis for landscape planning strategies for specific local sites.  
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1. Introduction 

China’s urbanization rate had reached 60.60% by 2019 [1]. Urbanization changes the structure of a city’s underlying 

surface [2], combining with the heat emission from human activities, which lead to the phenomenon of concern, 

that is the well-known urban heat island effects (UHI) [3,4]. The UHI was defined as the surface temperature of 

urban areas and is significantly higher than that of suburban areas [5]. That is the result of the continuous reduction 
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of vegetation due to the increasing number of impervious surfaces with huge heat storage capacity. Moreover, the 

tremendous heat generated by urban motor vehicles and human activities also exacerbates such phenomena. The 

UHI can aggravate air pollution [6], result in extremely bad weather conditions (e.g., strong winds and storms), and 

seriously affect both the physical and mental health of people [7–9], and thus the quality of life of urban residents 

[5,10,11]. Therefore, the cooling ef-fects of landscape on the UHI have become a global research hotspot [12–14] 

to explore technologies and strategies for urban planners to alleviate urban thermal environment.  

Fujian province is located on the southeast coast of China. It has a warm and humid climate and its terrain is mainly 

mountainous and hills. Its forest coverage rate has ranked first in China for 40 consecutive years. As the capital city 

of Fujian province, Fuzhou is famous for its reputation of being the “National Forest City” and “China’s Climate 

Eco-City”. Since China’s reformation and opening up, Fuzhou has implemented the strategy of “moving east and 

expanding south”, and its main urban area has con-tinually been expanding. By the end of 2018, the urbanization 

rate of Fuzhou exceeded 70%. With the continuous acceleration of urbanization and the expansion of built-up areas, 

the urban landscape pattern of Fuzhou has undergone significant changes, and the impervious surface area has 

increased significantly, while the area of vegetation and water has decreased dramatically [11]. In addition, the basin 

terrain and high-rise buildings have blocked the main air ducts of the city, leading to the LST rising faster in urban 

areas than rural areas, and an increased UHI effect as a consequence. Recently, Fuzhou became the top of China’s 

new “furnaces” [11]. Therefore, it is of the utmost urgency that the optimization of landscape pattern to maximize 

its ability to mitigate the UHI is explored. 

The purposes of this study are to: (1) observe the spatio-temporal evolution of the UHI in the urban area; (2) compare 

the cooling effect of water patches and vegetation patches; (3) investigate the spatially heterogeneous in the cooling 

effects of the inte-grated urban landscape pattern and identify its relative contributions to the urban heat environment. 

Based on these purposes, in this study we initially used the principal component analysis (PCA) method to 

synthesize a landscape pattern comprehensive index (LPCI) composed of the four common landscape metrics (i.e., 

aggregation index, AI; mean patch area, Area_mn; largest patch index, LPI; and percentage of landscape, PLAND) 

of the three major land surfaces (i.e., water, vegetation, and impervious sur-face). Then, unlike previous studies that 

only treat the UHI mechanism at a global level, we further employed the geographically weighted regression (GWR) 

to explore the spatially heterogeneous in the cooling effects of urban landscape. The proposed ap-proach can provide 

a new understanding of the interactions between landscape patterns and urban heat environments.  

2. Research Review 

The land surface temperature (LST) is an important index to analyze and study UHI [14]. To monitor the LST in a 

wide range in real time, it is convenient to use thermal infrared remote sensing technology [6,15,16]. A variety of 

LST retrieval algorithms have been proposed, such as generalized single-channel algorithm, split-window algorithm, 

and radiation transfer equation method, etc. [17–20]. The research has shown that the retrieval accuracy ranges from 

high to low as: split-window algorithm > generalized single-channel algorithm > radiation transfer equation method 

[16,18]. In China, many studies have employed LST to explore the spatio-temporal evolution characteristics of the 

UHI for megacities, such as Beijing, Shanghai, and Xi’an, respectively [21–23]. Re-cently, the urban-heat-island 

ratio index (URI) was coined [24] and frequently used to evaluate the UHI, and to observe the evolution of the heat 

island [11,25,26]. For example, Liu et al. [6] estimated, respectively, the heat island intensity and its range in Beijing 

at different periods using the quantitative URI, and evaluated the status of UHI condition of Beijing plain regions, 

indicating that the UHI effect in Beijing continued to increase from 1987 to 2001. The URI is a quantitative index 

that overcomes the influence of temporal and spatial differences, which can effectively evaluate the intensity of UHI 

in different time phases and different regions [4,27]. 

The spatio-temporal distribution of LST is closely related to climatic conditions, the extent and the nature of 
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underlying surface, population density, and other factors [28,29]. Of these, the land surface parameters (e.g., 

impervious surface, vegetation, water) have some of the greatest impacts on the urban thermal environment [3,30]. 

In terms of urban green space, some researchers explored the differences in cooling effects of different types of 

urban green land [31,32]. The normalized difference vegetation index (NDVI) was also extensively used to represent 

greenspace coverage to explore its association with LST [33,34]. The intensity of the cooling effect of water area 

was quantitatively evaluated [35,36]. In addition, Peng et al. [37] set the impervious surface index as the primary 

index to monitor the process of urbanizing expansion and its im-pact on urban thermal environment in Beijing. 

Recently, it has been found that landscape pattern is closely related to the LST. The effects of urban landscape 

composition and configuration on the urban thermal envi-ronment have been extensively investigated using 

correlation analysis and linear re-gression. For example, Myint et al. [38] used a multiple regression model to 

explore the influence of the impervious surface and the NDVI on the LST at different scales in Ar-izona, USA, 

indicating that even in a desert city with an abundance of vegetation, the impervious surface could still significantly 

increase the LST. More recently, the effect of landscape pattern on LST was explored, revealing that the landscape 

pattern index can effectively characterize urban LST and has a generous contribution to the analysis of UHI [3,39]. 

However, there is still a considerable knowledge gap in the relationship between the landscape pattern and the LST. 

Urban heat environment is the result of a combina-tion of multiple land cover types and their configurations. Most 

of the previous efforts have explored the relationship between an individual land cover type and the thermal 

environment, without holistic consideration of the composition and configuration of different landscapes, and have 

utilized global statistical methods, assuming that the relationships between the two regressors hold the same across 

the entire study area. From this perspective, it is worth studying the relationship between the consortium of different 

types of land and the urban thermal environment. In this context, two practical questions arise: how to build a 

comprehensive index measuring both landscape com-position and the configuration of different types of landscapes? 

How can we identify the spatially heterogeneous in the cooling effects of the consortium? 

3. Materials and Methods 

3.1. Study Area 

Fuzhou (25°20′ N to 26°38′ N, 118°18′ E to 119°59′ E), the capital city of Fujian province, is located in the east of 

Fujian province, bordering the East China Sea. It is a coastal harbour city. Fuzhou has typical estuary basin terrain 

with numerous mountains and hills. Fuzhou belongs to a subtropical Marine monsoon climate with a pleasant 

temperature and sufficient rainfall. A southerly wind prevails in summer. The annual temperature difference is 

minimum. The regions of this research include the main urban area of Fuzhou city and its surrounding densely 

populated areas, which have a total area of 698.3 km2 (Figure 1). In recent years, with the acceleration of 

urbanization, the urban area of Fuzhou expanded at an average annual rate of 6% to 7% from 1996 to 2005 [40]. 

The green area of the main urban area was small and severely fragmented [41], and it has obvious UHI [30].  
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Figure 1. Location of the study area. 

3.2. Data Source and Preprocessing 

The Landsat image data employed was downloaded from the Geospatial Data Cloud Platform 

(http://www.gscloud.cn/) of the Computer Network Infor-mation Center, Chinese Academy of Sciences. The orbit 

numbers of the two images are both 119/042 and the image has low cloud cover. The dates of the two images are 4 

May 2000 (hereinafter referred to as the 2000 image, the data type is Landsat ETM+) and 25 June 2016 (hereinafter 

referred to as the 2016 image, the data type is Landsat OLI/TIRS), respectively. The “Radiometric Calibration” and 

“FLAASH Atmospheric Correction” tools in the Radiometric Calibration module of the ENVI 5.1 software were 

employed to perform data preprocessing.  

3.3. Land Surface Temperature Retrieve and Urban-Heat-Island Ratio Index 

In this study, the single-channel method proposed by Jiménez-Muñoz et al. [17] was used to retrieve LST. This 

method only needs two parameters: the surface emis-sivity and the total water vapour content of the atmosphere 

profile to perform the in-version. First, the digital values (DNs) in the thermal infrared band (Band 6 in Landsat 7 

ETM+, Band 10 in Landsat 8 TIRS) were converted into the spectral emissivity values (Lλ) [Equations (1) or (2)] 

[30,42,43], and then we used the Equation (3) [30,42,43] to convert it into brightness temperature (Tb); additionally, 

the spectral emissivity was corrected according to the nature of the terrain [44–46]. 

(for Landsat ETM+) (1) 

(for Landsat TIRS) (2) 
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 (3) 

Among them, Qcal is the DN value of the infrared band of Landsat ETM+ images; ML and AL are the adjustment 

factors of the infrared band of Landsat TRIS images. These are the Radiance_Mult_Band_10 and 

Radiance_Add_Band_10 values in the MTL header file of Landsat TRIS, which are equivalent to the gain value 

and offset value of the Landsat ETM+ image; for Landsat ETM+, K1 = 607.76 W/(m2·sr−1·μm−1), K2 = 1281.71 

K; and for Landsat TRIS, K1 = 607.76 W/(m2·sr−1·μm−1) or 774.89 W/(m2·sr−1·μm−1), and K2 = 1281.71 K or 

1321.08 K. 

Using the Equation (4), Tb can be further corrected by emissivity, and then the temperature can be converted to 

degrees Celsius (°C) [47–49]. 

 

(4) 

Among them, λ is the effective wavelength (for Landsat ETM+ images, while the value of λ is 11.5 μm; for Landsat 

TRIS images, the value of λ is 10.8 μm). ρ = 1.438 × 10−2 mK, while ε is the surface emissivity, which can be 

calculated by Equation (5) [44]. 

 (5) 

Among them, m = 0.004 is the soil emissivity and n = 0.986 is the vegetation emissivity [46]. Pv is the proportion 

of vegetation, calculated using Equation (6). The calculation of NDVI can refer to the article of Hu et al. [50]. 

 (6) 

Since the two images used in the study area were spring image (2000) and summer image (2016), this paper adopted 

the method of temperature normalization [calculate using Equation (7)] [24,51] to eliminate the seasonal difference, 

which made the temperature values of different time phases unify to [0–1]. Then, we used the natural piecewise 

method to divide the normalized LST into 7 levels: extra-low temperature, low temperature, sub-low temperature, 

medium temperature, sub-high temperature, high temperature, and extra-high temperature, of which medium 

temperature area, sub-high temperature area, high-temperature area, and the extra-high temperature area were higher 

than the average LST of the study area, forming the heat island region. Then, the URI was proposed to calculate the 

ratio of the heat island to characterize the heat island effect change for the study area. The larger the URI index 

value, the stronger the heat island effect. The URI is expressed as Equation (8) [24]. 

 (7) 

 

(8) 

where m is the number of surface temperature grades, which is 7 here; n is the number of regional grades of heat 

islands above the average surface temperature, which is 4 here; Wi is the weight value of grade i, which is equal to 

the temperature grade value; and Pi is the percentage of the grade i area to the total area of the study area. 
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3.4. Landscape Classification and Sample Designation 

Taking the 2016 data as an example, combining it with the land-use characteristics of the study area, and referring 

to the land classification standards of the Chinese land resource classification system, the supervised classification 

visual interpretation method was used in the ENVI 5.1 software to classify the urban underlying land sur-face into 

three types by exploiting remote sensing images synthesized by bands (6:5:4): water, vegetation, and impervious 

surface (Figure 2a). The accuracy of the classifica-tion was inspected based on a confusion matrix with a total of 

2088 random points. The overall classification accuracy was 98.564% and the Kappa coefficient was 0.978, re-

spectively. The classification results showed that the proportions of the three land-scapes were: water (10.837%), 

vegetation (27.014%), and impervious surface (62.149%), respectively. 

Two methods were used for sampling. Firstly, a 900 m × 900 m fishnet established extract information of the 

temperature and the landscape type (Figure 2b), thereby al-lowing for the comparison of the heat environment 

among different landscape types. Secondly, to compare the cooling effects of water patches and vegetation patches 

of different sizes and shapes, four typical patches of water and vegetation were extracted according to their sizes 

and geographic locations based on the 2016 image, respectively (Figure 2c). The principles of extracting water 

bodies and green patches were: (1) patches in different sizes; (2) the environmental conditions around the sample 

patches were relatively consistent to reduce the disturbance of other factors. The information of the extracted patches 

is indicated in Table 1. 

 

 

Figure 2. Land type and patch location in the study area. (a,b) are land types of urban underlays; (c) is patch location 

map of water and vegetation. Wi is the extracted water patch, Vi is the ex-tracted vegetation patch. 
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Table 1. Water and vegetation patch sample information. 

Water Vegetation 

Number Area/m2 Number Area/m2 

W1 47,141.8 V1 7216.37 

W2 823,336 V2 26,543.4 

W3 5,799,400 V3 226,516 

W4 424,352 V4 3,025,610 

Then, ten 30 m-width buffers of each patch were created to explore the cooling ef-fect of water area and vegetation 

patches of different sizes (Figure 3). 

 

 

Figure 3. Buffer image of patches of different water or vegetation.  

3.5. Calculation of Landscape Pattern Comprehensive Index 

3.5.1. Selection of Landscape Pattern Index 

Landscape pattern refers to the type, size, shape, and spatial configuration of landscape patches. It is a quantitative 

indicator that describes aspects of landscape pattern information, reflecting landscape composition and 
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configuration. In this study, the four commonly used landscape metrics (AI, Area_mn, LPI, and PLAND) were se-

lected [52]. Then, taking the 2016 image data as a case, these metrics in each pixel were calculated adopting a 

moving window (900 m × 900 m) strategy in method in Fragstats 4.2 software. The calculation results of different 

metrics were further standardized to be between 0 and 1 using Equations (9) and (10) (Table 2). Among them, the 

water and vegetation had a mitigating effect on the UHI, while the increase of patches on the impervious surface 

exacerbated the UHI, so that the applied metrics of the water area and vegetation had a positive effect on alleviating 

the UHI, while metrics of the im-perviousness had the opposite effect. 

Normalization formula of positive metrics:  

(9) 

Normalization formula for negative metrics:  

(10) 

Table 2. Original value and the normalized value of landscape pattern index. 

Land Type 

AI Area_mn LPI PLAND 

Original Normalized Original Normalized Original Normalized Original Normalized 

Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean 

Water 99.61 0 78.88 1 0 0.80 86.49 0.09 11.85 1 0 0.14 100 0.10 19.31 1 0 0.19 100 0.10 20.98 1 0 0.21 

Vegetation 99.61 0 67.69 1 0 0.68 85.79 0.09 3.30 1 0 0.04 99.53 0.10 15.97 1 0 0.16 99.58 0.10 23.81 1 0 0.24 

Imperviousness 99.61 0 87.70 1 0 0.12 86.49 0.09 28.11 1 0 0.67 100 0.10 59.88 1 0 0.40 100 0.10 63.60 1 0 0.36 

3.5.2. Principal Component Analysis 

We aimed to construct a comprehensive index (i.e., LPCI) that included the quan-titative characteristics of all land 

types to quickly and quantitatively portray its cooling effects on the UHI. The effectiveness of the LPCI in practice 

may be affected greatly by weighting methods. In this paper, a principal components analysis (PCA) was adopted 

to determine the relative importance of each metric to the principal component of LPCI. PCA is a FRAGSTATS 

multidimensional factor compression technique, which can avoid any co-linearity problem between the four metrics 

[53]. PCA can automatically and objectively assign weights to each metric based on their contribution to the prin-

cipal components [54,55].  

Based on the above-mentioned four landscape metrics, the calculation of PCA was accomplished using the tool of 

“PCA Rotation” in ENVI 5.1 software. Firstly, the water landscape comprehensive index (WLCI), the vegetation 

landscape comprehensive in-dex (VLCI), and the imperviousness landscape comprehensive index (ILCI) were con-

structed for the three main landscapes; then, the LPCI was synthesized by the WLCI, VLCI, and ILCI using PCA 

technique. Tables 3 and 4 listed the statistical outcomes of all of the PCAs. All of the percent eigenvalues of PC1 

were larger than 80%, indicating that the PC1 components had integrated most of the feature information of all of 

the metrics; thus, the PC1 was proposed to construct the final comprehensive index.  

Table 3. Principal component analysis of the comprehensive index for each landscape. 

 
Water Vegetation Imperviousness 

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

AI −0.852 −0.239 −0.320 −0.340 0.870 0.084 0.293 0.387 0.137 0.740 0.490 0.440 

Area_mn −0.522 0.466 0.510 0.500 0.479 −0.295 −0.630 −0.536 0.083 −0.671 0.539 0.502 

LSI 0.048 0.844 −0.272 −0.460 0.096 0.905 0.000 −0.413 −0.975 0.047 0.008 0.215 

Pland −0.009 0.113 −0.751 0.650 0.065 −0.293 0.719 −0.626 0.152 0.002 −0.685 0.712 

Eigenvalue 0.145 0.223 0.002 0 0.147 0.016 0.002 0 0.247 0.012 0.001 0 
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Percent eigenvalue/% 85.51 13.5 0.91 0.08 89.16 9.43 1.04 0.37 94.79 4.67 0.35 0.19 

Table 4. Principal component analysis of the overall landscape pattern comprehensive index.  

 PC1 PC2 PC3 Weight 

WLCI −0.656 −0.686 −0.316 0.292 

VLCI −0.482 0.057 0.875 0.379 

ILCI −0.582 0.726 −0.368 0.329 

Eigenvalue 0.175 0.038 0.003 - 

Percent eigenvalue/% 80.91 17.76 1.33 - 

3.6. Geographically Weighted Regression Model 

We proposed a GWR model to explore the complex spatial variation relationship and correlation between the LPCI 

and the LST. GWR is a local regression technique with the ability to observe the spatial variations in the cooling 

effects of the LPCI on the LST, which is a significant improvement over commonly used global regression analyses 

(i.e., the ordinary least squares, OLS) model [56–58]. In this study, the GWR model was established with the LPCI 

as the independent variable and the LST as the dependent variable in the spatial sample unit of 900 m × 900 m. The 

average LST and LPCI values of each unit in 2016 were calculated based on zonal statistics of the ArcGIS 10.3 

software. The GWR model formula is [59]: 

𝑌𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑𝛽𝑘(𝑢𝑖, 𝑣𝑖)

𝑝

𝑘=1

𝑥𝑖𝑘 + 𝜀𝑖, 𝑖 = 1,2,⋅⋅⋅, 𝑛. (11) 

In this formula, (ui, vi) represents the coordinates of the sample point; β0(ui, vi) is the slant distance; βk(ui, vi) is the 

regression coefficient of the k-th explanatory variable at the sample point i; and εiis the error term. The regression 

coefficient was estimated using local weighted least squares. The formula is:  

 
(12) 

In this formula, W(ui, vi) is the spatial weighting matrix of the observation data at the sample point i, which represents 

the influence of sample points around the regression point on the regression point. The closer to the sample point i, 

the greater the impact on the local regression parameters and the greater the weight; otherwise, the smaller the 

weight. The key to estimating the regression coefficient βk(ui, vi) is to calculate the spatial weight matrix. In this 

paper, Gauss function is used to calculate it: 

 

(13) 

where dij is the Euclidean distance between the sample point j and pointi; and h is the band width, which determines 

the spatial variation of the GWR. The optimal bandwidth is determined by the Akaike information criterion (AIC). 

When AIC is at its minimum, the bandwidth h is the best. 

4. Results 

4.1. Spatio-Temporal Characteristics of Urban Heat Island  

According to Table 5, the average LST was 35.320 °C and 39.582 °C in 2000 and 2016, respectively, which indicates 

a 4.262 °C increase in 16 years. From 2000 to 2016, the areas with medium temperature and below have been 

reduced to varying degrees. Of these, the low temperature region had the fastest decline, with its area accounting 

for 9.554% of the total study area; on the contrary, the high temperature region expanded fastest, with the extending 
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area accounting for 8.709% of the total study area. As a result, the UHI area (including four temperature level 

regions: medium temperature, sub-high temperature, high temperature, and extra-high temperature) increased from 

343.717 km2 in 2000 to 440.703 km2 in 2016, with the increased area accounting for 13.894% of the total study 

area. 

Table 5. Surface average temperature and temperature grade area change from 2000 to 2016. 

Temperature Classification 
2000 2016 

2000–2016/% 
Area/km2 Proportion/% Area/km2 Proportion/% 

1 Extra-low temperature 89.748 12.856 62.554 8.960 −3.896 

2 Low temperature 73.776 10.568 70.676 10.124 −0.444 

3 Sub-low temperature 190.859 27.340 124.167 17.786 −9.554 

4 Medium temperature 184.433 26.419 147.522 21.132 −5.287 

5 Sub-high temperature 102.823 14.729 150.682 21.585 6.856 

6 High temperature 45.590 6.531 106.387 15.240 8.709 

7 Extra-high temperature 10.871 1.557 36.112 5.173 3.616 

 Total 698.100 100 698.100 100 0 

It can be observed from Figure 4 that the area of the urban heat island was greatly expanded from 2000 to 2016. 

The heat island effect in the original central area of the urban had been strengthened, and it had a tendency to extend 

to the southeast and along the banks of the Minjiang River. Consequently, the URI value increased from 0.328 in 

2000 to 0.457 in 2016, indicating an increased UHI effect in the study area. 

 

Figure 4. Classification of urban heat islands in 2000 and 2016. 

4.2. Cooling Effects of Different Landscape Types 

Figure 5 indicated that the average LST of the water (29.69 °C) < the vegetation (38.56 °C) < the impervious surface 

(41.82 °C). 
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Figure 5. Temperature of different landscape types. 

Figure 6 revealed that the temperature of the patches was inversely related to the size of the patch area, with the 

larger the patch area, the lower the LST. In terms of the water patches, W3 had the largest area and the lowest LST 

(27.97 °C), followed by the LST of W2 (31.17 °C) < W4 (37.81 °C) < W1 (38.04 °C). In terms of the vegetation 

patches, the order of area from largest to smallest was: V4 > V3 > V2 >V1, while the order of the LST was reversed: 

V4 (36.47 °C) < V3 (41.59 °C) < V2 (42.03 °C) < V1 (44.42 °C). 

 

Figure 6. Temperature information of water and vegetation patch samples. 

Figure 7 shows the trend of ambient LST around water and vegetation patches. In summary, the LST increased with 

the increase of distance, first increasing rapidly, and then increasing more gently. Figure 7 also reveals that the 

cooling effect of the water body patches from large to small were W3 > W2 > W1 > W4, respectively. The cooling 

distance of the water body patches was approximately 120–150 m, and the LST tended to be flat beyond this range. 
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In vegetation patches, the curve of the V1 was almost flat, indicating that it has little cooling effect on the 

surrounding environment. The cooling distance of the other vegetation patches (i.e., V4, V3 and V2) was 

approximately 60–90 m. It should be noted that, although the area of four water patches was smaller than the V4, 

their cooling effect was greater than V4, indicating that the cooling effect of water body exceeded that of vegetation. 

 

Figure 7. Trends of LST in different distances from water (left) or vegetation (right). The temperature of each ring 

buffer does not include the temperature of the patch itself. The dotted line represents the average LST. 

4.3. Spatial Distribution of Landscape Patterns 

The average values of the WLCI, VLCI, and ILCI were 0.618, 0.407, and 0.490, respectively. For the water 

landscape, the high value of WLCI was distributed on both sides of the Minjiang river and Wulong river; additionally, 

some high-value clusters were distributed in the urban inland river or lake area (Figure 8a). The areas with higher 

VLCI value were distributed in the urban–rural junction around the study area, where there are contiguous green 

spaces; the hills and park areas within the urban area also had higher VLCI values (Figure 8b). Before synthesizing 

the ILCI (Figure 8c), its four landscape indexes had been reversely normalized. Therefore, the spatial distribution 

pattern of ILCI was similar to the VLCI. As a consequence, the spatial distribution pattern of LPCI was very similar 

to that of vegetation, with high LPCI values mainly distributed at the edge of the study area, while areas with lower 

values were mostly concentrated in urban centers (Figure 8d). 
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Figure 8. Spatial distribution of landscape pattern. (a) is the water landscape comprehensive index; (b) is the 

vegetation landscape comprehensive index; (c) is the imperviousness landscape com-prehensive index; (d) is the 

landscape pattern comprehensive index.  

4.4. Spatial Heterogeneous Cooling Effects of Landscape Pattern 

Taking LPCI as the independent variable and LST as the dependent variable, the spatial relationships between these 

two regressors were further studied using the GWR model. The spatial distribution of Local R2 showed that the 

clusters where the landscape pattern had a greater impact on the thermal environment were (the red and yellow 

clusters): urban centers, northern cities, and the sporadic clusters around the city (Fig-ure 9a). Most of these clusters 

indicated a negative association between the LPCI and the LST (Figure 9b), suggesting that joint contributions 

interacting with various landscape metrics of the three major landscape types may be the predominant influencing 

factor for urban heat environment in these areas. This illustrates that higher AI, Area_mn, LPI, and PLAND of water 

area and vegetation, but lower AI, Area_mn, LPI, and PLAND of imperviousness surface, may contribute to the 

alleviation of the UHI. However, it should be noted that the cooling effect of the LPCI in each spatial unit was also 

signif-icantly and spatially heterogeneous across the study areas. It revealed that there were a few grids that 

exhibited positive associations with LST (Figure 9b), though the coeffi-cient of determination (R2) in these places 

was not large, most of them lower than 0.075. In this case, this suggests that the influence mechanism of these places 

on the thermal environment was more complicated, and the landscape pattern was not the dominant factor here. 
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Figure 9. Local R2 and coefficient of GWR model.a is the local R2 of GWR model; b is the coefficient of GWR 

model.  

5. Discussion 

5.1. Validity Evaluation of LPCI 

The ideal landscape index should be representative, which means that the index should fully reflect the objective 

characteristics of the urban landscape. In order to calculate the validity of the LPCI, the Pearson correlation test was 

used to evaluate the validity [50]. A two-step correlation test was performed. The first step was the correla-tion 

analysis between WLCI, VLCI, ILCI, and their constituent landscape metrics. The results showed that the average 

correlation coefficients were 0.913, 0.896, and 0.879, respectively, higher than any average correlation coefficients 

between the landscape metrics (Table 6). The second step was to test the correlation between LPCI and the 

comprehensive index of water, vegetation, and imperviousness (i.e., WLCI, VLCI, ILCI). The results showed that 

the average correlation coefficient was 0.629 (Table 7), which was also higher than average correlation coefficients 

between comprehensive index of water, vegetation, and imperviousness. Moreover, the significance level of all of 

the correlations was less than 0.01. Therefore, LPCI was considered to have a good repre-sentativeness for all of 

the analyzed landscape metrics of all of the landscape types. 

 

Table 6. Correlation matrix of three comprehensive indexes and landscape pattern index. 

Water Vegetation Imperviousness 

 AI Area_mn LPI PLAND WLCI AI Area_mn LPI PLAND VLCI AI Area_mn LPI PLAND ILCI 

AI 1 0.602 0.737 0.739 −0.808 1 0.541 0.828 0.843 0.938 1 0.661 0.794 0.791 −0.775 

Area_mn 0.602 1 0.850 0.797 −0.901 0.541 1 0.747 0.706 0.715 0.661 1 0.726 0.719 −0.955 

LPI 0.737 0.850 1 0.960 −0.978 0.828 0.747 1 0.955 0.791 0.794 0.726 1 0.982 −0.895 

PLAND 0.739 0.797 0.960 1 −0.963 0.843 0.706 0.955 1 0.968 0.791 0.719 0.982 1 −0.890 

Mean 0.693 0.750 0.850 0.832 −0.913 0.737 0.665 0.843 0.834 0.896 0.749 0.702 0.746 0.831 −0.879 

Furthermore, the results of the main component analysis showed that the first main component of WLCI, VLCI, 



第八届中国林业学术大会                                                     S18 森林工程与林业机械分会场 

1614 

and ILCI was greater than 85% (Table 3), while the first main component of LPCI was greater than 80% (Table 4), 

which means that the LPCI had the ability to explain most of the landscape pattern information. This also illustrated 

the objectivity and rationality of the new comprehensive index. 

Table 7. Correlation matrix of LPCI and three comprehensive indexes. 

 WLCI VLCI ILCI LPCI 

WLCI 1 0.249 −0.425 −0.202 

VLCI 0.249 1 0.564 −0.927 

ILCI −0.425 0.564 1 −0.759 

Mean 0.337 0.407 0.495 0.629 

5.2. The Relationship between Urban Landscape and Thermal Environment  

From 2000 to 2016, the UHI effect in Fuzhou showed a trend of aggravation. This was mainly due to the fact of the 

significant changes in land-use structure caused by the acceleration of urbanization, with the impervious surface 

areas of buildings and roads, among other surfaces, in the underlying of the city continually increasing, and it is 

difficult for water and vegetation, which only accounted for a small proportion of the total area of Fuzhou city, to 

mitigate the rising of LST. Moreover, due to the large urban population density and the basin terrain in the study 

area, the volatilization of the tremendous heat generated by human activities was very challenging. In Septem-ber 

2011, Fuzhou proposed to implement the urban expansion strategy of “expanding eastward and southward, along 

the river to the sea”. Our analysis indicated that the areas with increased thermal environment had a good consistency 

with this urban boundary expansion policy.  

In terms of the cooling effect, we found that the cooling effect of water bodies ex-ceeded that of vegetation, in spite 

of the patch area of green space being larger than that of water body. The cooling distance of the former is 

approximately 120–150 m, while it is about 60–90 m for the latter. Most current studies [60,61] have shown the 

same results as our study. Only O’Malley et al. [62] found that green spaces have a stronger cooling effect than 

water. Our results also verify other predecessors [63,64], which have revealed that the minimal cooling extents of 

the green park were generally under 100 m, but the median cooling distance can reach to 200 m.  

We found that the cooling effect is affected by the size of the patch, and that the effect gradually increases as the 

area of the patch increases. For vegetation patches, we found that if they are too small, they have no cooling effect 

at all. For example, our case demonstrated that there was little cooling effect on the surrounding environment for 

the V1 patch, with its area less than 1 ha. This result is in line with the previous study [64], suggesting the threshold 

value of cooling efficiency of green spaces to be 4.55 ± 0.5 ha in Fuzhou city. Jaganmohan et al. [65] also revealed 

that when the size of the green space area exceeds 14 ha, the size of the green space is the primary factor influencing 

the cooling intensity. However, just because the patch is bigger, it does not mean that it is better. There are several 

reasons for this: (1) urban land resources are still relative-ly scarce; (2) when the patch area of urban green space is 

more than a certain threshold, increasing the patch area may not enhance the cooling intensity [66]; (3) optimizing 

greenspace configurations for fixed areas can also alleviate the UHI. For example, the cooling effect of a green 

space with a compact shape (such as a circle or a square) is better than that of a complex shape [67–70], while the 

cooling effect of the water varies with the geometry of the river, vegetation coverage, riverbank height [71,72], and 

cli-mate factors [71]. 

There is an exception here, which is that the water area of the W4 was much larg-er than that of the W1, but the 

cooling effect of the W4 was not as good as the W1. This is because the W1 is located far from the urban center, 

surrounded by smaller building density, and has higher vegetation coverage, while the W4 was the West Lake in the 

urban center, surrounded by high-density buildings. This means that in addition to the characteristics of the patch 

itself, the surrounding environmental conditions will also affect its cooling effect. Our study is consistent with [71], 
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which has found that the ur-ban morphology around the river will affect its cooling effect, and narrow streets and 

lower buildings are beneficial to the river’s cooling. The river produces an effective cooling effect by dispersing 

cold air to the surrounding area [35,73]. Therefore, wind speed is another important factor that determines the 

cooling effect of water [74]. The humidity and temperature of the air are also influencing factors [72]. 

The shape, density, and height of buildings in the urban also influence LST [75–77]. Since impervious surfaces such 

as buildings and roads account for the heaviest pro-portion in urban regions, the pattern and distribution of 

impervious surfaces has the greatest impact on the urban thermal environment. The increase of impervious surfac-

es in urban regions will lead to the reduction of surface infiltration and soil moisture [78]. Couple this with the heat 

emission from human activities, and the LST will be raised faster than the ability of vegetation and water to alleviate 

urban heat environ-ment. However, buildings have more than just an effect on raising the LST. Nichol’s [79] 

research found that in tropical cities, the temperature of high-rise buildings was colder than that of low-rise buildings. 

The research results of Cai and Xu [80] showed that a single low-rise building has a warming effect on the 

underlying surface of a city. However, high-rise buildings produce larger shadows, which, coupled with the impact 

of wind farms and greenery around the buildings, have a cooling effect on the urban surface. Building density is 

also an important factor affecting LST. At present, some research cases had found that building density in southern 

China is positively corre-lated with LST [81–83]. Moreover, the research results of Song et al. [84] showed that in 

northern Chinese cities, the influence of building density on LST was more obvious than in southern Chinese cities. 

In other different geographic environments, studies show that building density and LST may be negatively 

correlated. For example, in semi-arid areas, vegetation was sparse and the land was severely exposed, resulting in 

higher ground temperature [85,86]. The difference between the research results em-phasizes the different impacts 

of building density on LST with different urban infra-structure conditions, population density, and environmental 

climates, which will lead to inconsistent or incomplete research conclusions.  

Moreover, many studies have shown that the spatial configuration of landscape has a great impact on the cooling 

effect [67,68]. As mentioned above, we have taken an important step towards proposing a landscape comprehensive 

index (LPCI), which has proved to be effective and representative. Moreover, based on the GWR model, we can 

effectively capture the cooling effect of the LPCI on the heat environment site specifi-cally, thus enhancing our 

understanding of the landscape paradigm that determines the LST at the local level. Therefore, this is conducive to 

the implementation of precise heat island alleviating measures, rather than a one-size-fits-all policy. 

5.3. Implications and Limitations 

This study revealed the relationship between LST and urban landscape pattern, so we can use this as an entry point 

to provide an effective way to reduce the UHI effect for urban landscape design. Firstly, water and vegetation 

landscape can alleviate the urban high temperature. Nevertheless, their cooling effect is affected by a variety of 

factors, such as area and geographic location. Secondly, the cooling effect of landscape configuration is more 

obvious in an urban center, where optimizing landscape config-urations preferentially is encouraged. For example, 

we can improve the compactness of the cooling patches, through the construction of roads and riverbank greenways. 

In addition, expanding the existing green patch area can improve the cooling effect.  

However, there are still some limitations in this study, which can be summarized as follows. Firstly, due to limited 

conditions, it is difficult to find patches with similar surroundings but different sizes, and there was just a small 

number of patches selected for analyzing the cold island effect in water and vegetation patches in this study. More 

patches should be selected in different sizes and geographic locations to explore the threshold size of the patch for 

water body and vegetation. Secondly, the cooling effect of the vegetation also depends on its tree species 

composition [87,88], e.g., the cooling effect of trees was higher than bushes and grass. However, this study did not 

make a more precise and detailed classification of vegetation. In addition, this paper only con-sidered the impact of 

landscape patterns on LST; future research may integrate climate, terrain, and population density factors into the 
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GWR model to obtain more objective and reasonable results.  

6. Conclusions 

This paper proposed a comprehensive index (LPCI) to evaluate landscape pattern and employed GWR to explore 

spatially heterogeneous in the cooling effects of the landscape. The proposed LPCI could explain more than 80% 

of information of all of the applied landscape metrics for all of the landscape types, which is a representative and 

objective index to assess urban landscape pattern. At the same time, the GWR approach could explicitly visualize 

the spatial heterogeneity in the cooling effects of landscape pattern and prioritize areas to optimize the landscape 

pattern and facilitate UHI miti-gation. This study has demonstrated that, compared with vegetation patches, water 

patches have a more obvious cooling effect on the surrounding environment, with the cooling distance within 60–

90 m for the vegetation, while reaching 120–150 m for water body. The GWR results revealed that the cooling effect 

of the landscape pattern varied spatially across the study area, indicating that the configuration of landscapes is 

more important in urban centers in alleviating urban heat environment than in urban fringe areas. The results of the 

research can enhance our understanding of the landscape paradigm that determines the LST and thus be conducive 

to the implementation of precise heat island alleviating measures. Meanwhile, this provides new ideas for future 

research on landscape pattern mitigation of urban heat island effect and a strong basis for landscape planning strategy.  
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