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ABSTRACT 

Land use land cover change (LULCC) and land surface temperature (LST) are two important indicators of global 

environmental change that have significant impacts on both natural and human systems. Urban growth coupled with a rising 

population is resulting in increased demand for natural resources, causing land use changes into megacities. In the context of climate 

change, the world is striving to find an effective way to be "carbon neutral". By the end of 2021, 136 countries in the world have 

put forward their "carbon neutral" commitments, among which Nepal has advanced its "carbon neutral" date to 2045, which is a 

very challenging task. Therefore, it is particularly important to study LULCC and its relationship with LST in Nepal in recent decades, 

so as to provide scientific and empirical basis for relevant construction departments to make corresponding plans. 

The main aim of this research was to assess the LULCC and its impact on LST using remote sensing and GIS techniques for 

2002, 2012 and 2022 in Chitwan District, Nepal, in order to understand LULCC and their influencing factors in the past 20 years, 

to rationally evaluate environmental changes in this area. Firstly, Landsat images covering the study area were downloaded from 

USGS Earth Explorer, and normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and 

normalized difference built-up index (NDBI) were calculated based on the corresponding bands of the images. After image pre-

processing, a supervised approach with a maximum likelihood classifier was employed for the classification and generation of 

LULC maps for the mentioned time periods. Seven land use classes were identified as barren land, built-up area, cropland, forest, 

grassland, shrub and water bodies. 

The results showed that almost all the land cover components have changed (gains or losses) in the time period. Change 

detection analyses showed that built-up areas increased, especially in the last 10 years. The built-up area increased from 152 km2 

to 412.48 km2 in the total study area between 2002 and 2022. The rate of urbanization was dramatic between 2012 and 2022. 

Cropland area decreased by 11.24%, grassland area decreased by 4.14%, and shrub area increased from 2.15% to 6.08% from 

2002 to 2022. In terms of the forest area, it increased from 1393.51 km2 to 1492.31 km2 (2002-2012), later in 2022, the area 

decreased 67.54 km2. It was observed that there has been a rapid change from cropland to built-up areas. The LST also dramatically 

changed over the time period. The highest LST in the study area was observed in 2022 (40.96◦C) and it increased by 5.3◦C from that 

of 2002 (35.66◦C). Therefore, it is crucial to enhance the urban planning, including adopting green city technology, to mitigate the 

rising LST. 

Nepal, as one of the least developed agricultural countries in the world, has been seriously affected by urbanization in recent 

years. The area of vegetation in Chitwan (including cultivated land, grassland, shrub and forest) has been reduced to varying 

degrees, and the LST has also increased significantly, which needs to attract the attention of some concerned authorities. This study 

provides scientific support and empirical evidence for the concerned authorities to promptly act upon the issue and formulate plans 

accordingly. 
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1. Introduction 
The geologic record shows multiple periods of warming and cooling related to the earth's climate. But recently, 

anthropogenic factors have caused significant changes in the earth system, and as a result, the entire planet is through 

a rapid warming cycle that is linked to a number of effects, including sea level rise, glacial melt, and unpredictability 

of weather patterns. According to the fourth assessment report published by the Intergovernmental Panel on Climate 

Change (IPCC), the global surface temperature will rise by 1.1– 6.4℃ by the end of the century (Fischlin et.al., 

2007). Land use change has impact nearly a third (i.e., 32%) of the world's geographical surface since 1960 (Winkler 

et al., 2021). A wide range of environmental and landscape characteristics are impacted by changes in land use and 

land cover (LULC) including the quality of water, land, and air resources, ecosystem processes, and the climate 

system itself. The major reasons attributable for such changes include surface effect and greenhouse gases fluxes. 

Changes in LULC should be regularly monitored since they have a negative influence on the environment, 

particularly by warming urban microclimates (Heinal et al., 2015; Policelli et al., 2018). The pattern of LULC is 

also dependent on humans’ utilization of natural and socio-economic variable throughout the course of time and space. 

Land use and land cover change (LULCC) is an extremely complicated process that can assume various shapes and 

progress at varying rates and magnitudes. Depending on its scale, its dynamics will change (Keyser & Kaiser, 2010). 

Land use change is the manipulation of land cover by humans for numerous purpose including food, fuel wood, 

forage, litter, medicine, raw materials and recreation. Land cover changes can occur even in the absence of human 

activities through natural processes. So LULCC is influenced by numerous socioeconomic, environmental and 

political factors (Ojima et al., 1994). To determine the causes of change, processes and effects of LULCC, it has 

been examined from several perspectives. 

The study of LULCC is crucial to understanding of global environment change. In order to strengthen concepts 

of land use patterns, urban intensity, urban diversification, urban heat phenomena, along with other factors, 

understanding LULC has become increasingly crucial. This 

because it can help to understand aspects of urban dynamics such as geography, morphology, ecology, and 

sustainability. However, due of various driving forces, the dynamics of LULC change have not been consistent 

around the world. Change in LULC has been influence by population pressure, human activities, and development 

(Haregeweyn et al., 2015; Meshesha et al., 2014). Geospatial data is pivotal to adapting to the current land use 

pattern, planning for anticipated future changes, and assessing their effects on infrastructure and the surrounding 

environment. The classification of LULC serves as a warning system, highlighting the advantage of environmental 

conservation initiatives like afforestation while alerting people actions that harm the environment. LULC analysis 

can detect the human activities and natural world. In developing nation like Nepal, unplanned urbanization is 

becoming a significant development issues and challenges. 

Remote Sensing and GIS, which first appeared in early 1970s’, are essential to the world especially for 

environmental scientist (Jayantha et. al., 2015). GIS and RS are effective tools for investigating urban dimensions, 

including LULC mapping, urban density, urban modeling, and environmental implications of urban development 

over time (Kumar et al., 2016). Remote Sensing provide fast, accurate and trustworthy information of earth surface 

at specific time intervals so, is a way that it is both efficient and affordable (Chen et al., 2017). Satellite images at 

various spatial, temporal, and spectral resolutions have proven most efficient role in monitoring LULC mapping 

(Aredehey,2018).The aspects of the LULCC dynamics are reliably measured over time using remote sensing data. 

Landsat satellite image analysis based on remote sensing has been acknowledge as an effective and trustworthy 

technique for LULC analysis (Fu et. al., 2017; Tao et. al., 2015). Several researchers (Baumann et al., 2014; Butt et 

al., 2015; Chasmer et al., 2014; Churches et al., 2014; Dronova et al., 2015; Iqbal and Khan, 2014; Naqvi et al., 
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2014, Zhang et al., 2013) has used remote sensing data to analyze land use classification and monitoring, managing 

land degradation and analyze land use change. Studies of environmental deterioration using remote sensing and GIS 

are more efficient in terms of cost, time and area coverage than field surveys. 

LST is a key parameter to measure urban health with respect to LULCC (Govinda and Ramesh, 2018). As, a 

consequence of anthropogenic climate change it contributes to the warming and increased LST globally. LST is 

connected to the planetary boundary layers combined with 

thermal condition and surface energy balance (Jin, 2004). A solution for the absence of ground- based 

temperature data is to calculate LST from thermal infrared remote sensing data (Geremeskel and Abera, 2017); Liu 

et al., 2018). The growth of urbanized area, has resulted in deforestation and increase in the average global surface 

temperature rise is caused by the depletion of the ozone layer this both might be directly contributing factor to the 

raise in LST. The connection between the land surface and atmosphere involves numerous processes and feedback, 

all of which has the potential to change simultaneously. These interactions determine LST, which is a crucial 

component of the climate system (Cong and Brandy, 2012). 

Although Nepal is a mountainous nation that makes up two-thirds of the Himalayan region (Rokaya et al., 2012), 

its primary economic activities are based on agriculture. Nepal is divided into five physiographic regions: Terai, the 

Siwalik range, Hill, Middle mountain and High mountain. Even with slight changes in the low land area of Terai, 

the Middle Mountain and High Mountain regions are more susceptible to LULC and are more severely affected by it 

(Khanal, 2002). Due to the steep gradient of Nepal's mountain slopes, this type of impact is not just restricted to 

locations where change occurs, but also readily spreads with additional influence in the plains and low land areas. 

Since the 1970s, there have been several concerns with economic growth, human activities, and the environment 

generally in Nepal due to the rate of forest land degradation and expansion in farmland (Collins & Jenkins, 1996). 

The Himalayan Environmental Degradation theory (Ives & Messerli, 1990) claims that Nepal's LULC difficulties 

are directly related to mass forest degradation induced by economic activity based on natural resources, high 

population growth rates, and poverty. 

Urban planning and administration now face new difficulties as a result of this rapid and uncontrolled 

urbanization. Hence, in order to build urban settlements and adapt to the changing environment, urban planners, 

policymakers, and citizens of cities must come up with new and inventive solutions (Hoelscher & Aijaz, 2016). The 

permanent loss of vegetation and an increase in built-up areas are two of urbanization's main effects (Sharma et. al., 

2013). This modifies the local climate, which has an impact on the urban environment's health. 

The GIS and remote sensing techniques were applied in this research to detect the LULCC and LST pattern and 

to analyze their relationship over Chitwan district during 2002, 2010 and 2022. 

Research on the relationship between LST and LULC with topographic elements in the Terai region has not been 

done. Therefore, the research was conducted in order to assess map and evaluate the historical status and 

contemporary changes of LULC in Chitwan District as well as to identify the composition and distribution of main 

LULC categories. The research was meant to build a monitoring plan for operational usage. The research's findings 

were intended to provide important information to policy makers and resource managers regarding the areas where 

immediate deforestation mitigation measures were needed for sustainable management, 

 

Research questions and objectives 

The purpose of this study is to identify and analyze patterns of LULCC through time and its potential 

indications on LST in Chitwan District, Nepal. Also, to indicate the composition and distribution of major LULC 
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types using Landsat imagery. It helps to prioritize management, sustainable development, and conservation 

initiatives. 

To achieve the general objective, four specific objectives were formulated as follows: 

(1) To assess the LULCC in Chitwan based on the analysis of satellite imagery. 

(2) To calculate the LST in the study area from 2002, 2012 and 2022. 

(3) To determine LST change on each LULC type and investigate the relationship between LST and 

LULC characteristics. 

(4) To examine the relationship between LST and satellite indices like NDVI, NDWI, NDBI from 2002 

to 2022 in Chitwan District. 

2. Study area and Data 
2.1 Study Area 

Chitwan district (27°36′21.60″N, longitude 84°22′47.28″ E) is one of the 77 districts of Nepal that is 

located at the southwest corner of Bagmati Province. Chitwan covers an area of 2,238.39 km² i.e., 1.5% of the total 

area coverage of Nepal. The Makwanpur district in the east, the Parsa District and Bihar, India in the south, and the 

Nawalparasi District along the Narayani River in the west border the district. The Narayani River is the main river 

of Chitwan that separates the district's western boundary and flows from north to east. Siwalik region makes up the 

majority of the Chitwan district (86.5%), followed by the Mid-mountain region (12.7%) and Terai region (0.8%). 

The district's elevation ranges from 244 to 1945 meters. Administratively, the district is made up of seven 

municipalities, of which one is a metropolitan city, five are urban municipalities, and one is a rural municipality. 

According to the 2021 national census, Chitwan had a population of 722,168 and a population density of 325.6/km². 

The population has increased by 2.1% annually since the 2011 census. 

Tropical and subtropical forests are a distinctive feature of the Chitwan district. The district has a range of 

climatic seasons. Mainly Chitwan’s climate is characterized by a tropical monsoon and high humidity throughout 

the year. During the hottest days of the year, temperatures can occasionally rise as high as 29°C (84°F), with the 

average maximum temperature hovering around 27°C (80°F). The average minimum temperature in the colder 

months, like January, is 3°C (38°F). Chitwan receives an annual average rainfall of around 1900 mm minimum 

rainfall of 6 mm in November and maximum rainfall of 645 mm in July. According to NAPA rankings for climate 

change vulnerability, the Chitwan district is classified as High Vulnerability, with a vulnerability index ranging from 

0.061 to 0.786. 

Situated at the base of the Himalayas, Chitwan harbors a remarkably diversified assortment of plants and animals. 

Chitwan National Park located in the subtropical lowland of this district is Nepal’s first National park and a World 

Heritage Site that was established in 1973. Sal (Shorea Robusta) forest, a moist deciduous plant species native to 

the Terai region, makes up around 70% of the park's total natural vegetation. The other types of vegetation include 

grassland, riverine forest, and Sal (Shorea Robusta) with Chir pine (Pinus Roxburghii). The National Park host a 

greater biological diversity with over 55 amphibian and reptiles, 525 bird, and 50 mammal species in the park. It 

is 

home to one of the remaining populations of single-horned Asiatic rhinoceroses and one of the 

Bengal Tiger's last refuges. The Chitwan district is a prime location for conducting this study as this region has 

undergone several changes in its land use patterns throughout the years. In the 1950s, the district was partially 

deforested to make room for settlement, cultivation, and the eventual eradication of malaria (Zvoleff & An, 2014). 
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Figure 2: The geographic location of the study Area (Chitwan District) 

Data collection 

Primary data collection 

(1) Data acquisition 

For this study, two types of Landsat satellite images of past three decades 2002, 2012 and 2022 Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor 

(OLI/TIRS) Collection 2 Level 1 Science Products was retrieved from United States Geological Survey (USGS) 

(Source: https://earthexplorer.usgs. gov). There are two Landsat levels: Level-1 and Level-2. The image data in the 

Level-1 product is kept in Digital Numbers (DNs), which can then be translated to Top-of-atmosphere reflectance 

or at- sensor radiance using the product's supporting metadata. Level-2 products are the image data thathas been 

calculated using Level-1 products. Surface Reflectance and Surface Temperature scene- based products are included 

in level-2. 

Landsat 8 image data files are comprised of 11 spectral bands with a spatial resolution of 15 meters 

 

 

for the panchromatic band 8 and 30 meters for bands 1 to 7 and bands 9 to 11. Likewise, Landsat 7 ETM+ 

images are composed of eight spectral bands, with bands 1–7 having a spatial resolution of 30 meters and 

panchromatic band 8 having a resolution of 15 meters. The Level 2 Science Products however do not include a 

panchromatic band. 

The cloud cover range was kept between 0-10% to avoid distortion of satellite images from clouds and cloud 

shadows. The distortion could potentially misrepresent land surface featuresand modify the reflectance of ground 

objects (Zhu & Helmer, 2018). As the percentage of cloud coverage was kept very low while downloading the 

Landsat product, there were very few satellite images available for applications. Therefore, satellite images were 

obtained for the month of October and November. Normally, early-season satellite images are suggested for satellite 
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time series construction as late- season images are susceptible to senescence and early snowfall (Wang et al., 2022). 

This study area, however, offers lowland climatic conditions and comprises low-latitude forests, so there are no 

snowfall records to date. 

Table 1: Characteristics of Satellite Data used in Present Study 

 

 

Year 

 

Satellite 

 

Sensor Acquisition Date Resolution

 Source 

2002 Landsat 

7 

02.04.2002 
ETM+ 

25.04.2002 United States 

 

2012 

 

Landsat 

7 

15.05.2012 

ETM+ 30m 
Geological Survey 

22.05.2012 (USGS) (https://earthex 

24.04.2022 plorer.usgs.gov) 

2022 Landsat 
8 

OLI 

  25.04.2022  

 

(2) Topographic map 

Besides Landsat images, the secondary data that was used in this research was high-resolution topographic 

maps. A topographical data layer was used to delineate administrative boundaries, contour, hydrology and other 

forms of LULC on the scale of (1:25,000). These data were obtained from the official records of the Survey 

Department of Nepal, ICIMOD. It was digitized manually. The obtained information helps in ground verification 

for supervised likelihood classification and accuracy assessment of classification of satellite image. 

2.1.1 Secondary data collection 

Secondary data and information were collected through review of relevant literature, Ministry of Forest and 

Soil Conservation, DOF, DSCWM, Division Forest Office, concerning NGO's and 

 

 

INGO's such as Integrated Centre for Integrated Mountain Development (ICIMOD) and other agencies. 

Various web sites and documents through internet will also be studied during the secondary data collection. 

3. Methodology 

3.1 LULC Classification 

Landsat satellite images from the Landsat 8 and Landsat 7 obtained in 2002, 2012 and 2022 were used for the 

classification procedure and study of the various LULC classes. Radiometric, Atmospheric and Sun angle 

corrections of respective Landsat imageries were carried out. LULC maps for change detection analysis were 
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generated using digital supervised classification with a maximum likelihood classifier (Lillesand et al. 2004) in Arc 

GIS 10.7. Supervised classification is when the user creates the spectral signatures of well-known classes, such as 

urban and forest, and the program then assigns each pixel in the image to the cover type to which its signature is 

most similar. This type of classification is most frequently utilized for quantitative assessments of remote-sensing 

image data. 

Data sets were trained using the pixel color's tone. Polygons were drawn and placing them in an AOI (Area of 

Interest) layer allowed for the creation of training sites in the images. With the establishment of a specific area of 

interest (AOI), also known as training classes, the supervised categorization is used. 

Table 2: LULCC classifications scheme 

S.

N. 

LULC Classes Description 

  The class comprises bare fields, rock-strewn surfaces, and other soil types 

1 Barren Land that are perpetually devoid of plants. 

  This class represents residential area, commercial buildings, roads and other 

2 Built-up Area manmade structures. 

  Land devoted to the cultivation mainly rice, mustard; maize, and vegetables 

3 Cropland is included in this class. 

  This class corresponds dense trees and tall vegetation and also includes 

4 Forest protected areas, national and private forest. 

5 Grassland This class includes, Generally open and continuous, fairly flat areas of grass. 

  This class includes low-growing woody plants and other bushy plants that 

6 Shrub are primarily found along the edges of forests. 

  Open water bodies such as rivers, reservoirs and lakes are included in this 

7 Water Bodies class 

Polygons were merged and set up in the signature editor to train each individual class. These polygons were 

combined and assigned a unique class name. The signature file (.sig format) was then created from the signature editor 

file. In this research, three signature files for different year were created to train the 2002, 2012 and 2022 data sets. 

Finally, the supervised image classification process was conducted using the trained data sets. For each lesson, more 

than one training area were utilized. The training locations was selected in accordance with the Google 

Map, Google Earth, and Landsat images. 

 

3.2 Accuracy Assessment 

Accuracy assessment is one of the most crucial subsequent steps in the classification process. In this 

study, accuracy assessment w a s performed by comparing a map produced from remotely sensed data with another 

map obtained from some other source. Rapid changes in the landscape are common. Hence, it is ideal to get the 

ground reference as soon as the remote sensing data are acquired. Theobjective of accuracy assessment is to assess 

the precision with which the pixels were sampled into the appropriate land cover classes on a quantitative level. The 

accuracy of 2002, 2012 and 2022 maps have been independently assessed. The main emphasis for accuracy 

assessment pixel selection that could be identified on both Landsat high-resolution images, Google Earth Pro and 

Google Map. The LULC data and map of ESRI, an American multinational GIS software company, is accurate and 

comparable and was used for this accuracy assessment too. Furthermore, historical records including topographical 

maps developed by the Survey Department of Nepal with scales of 1:25000 and 1:50000 was used for the assessment. 



第八届中国林业学术大会                                                               S51 留学生论坛 

3095 

A number of quantitative methods were used for assessing image classification accuracy, including overall 

accuracy, user accuracy, producer accuracy, and Kappa statistics, which are one of the best quantitative procedures 

for image classification accuracy (Rahman et al., 2019). Kappa is a frequently cited measure of how effectively 

reference data and classified data agree however, the information it provides is constrained because it does not 

differentiate among quantification error and location error (Pontius, 2002). Classification errors may be caused by 

a variety of factors, such as the topographic effect, a lack of samples for a particular class, misclassification of mixed 

pixels near class boundaries, or inaccurate ground control point locations that lead to errors in image-to- image 

registration Helmer et al., 2000 ; Foody, 2002). 

Thus, accuracy assessment provides an overall accuracy of map as well as accuracy for each class in the map. 

The overall accuracy percentage was calculated by using following formula: 

Overall Accuracy = 
Total Number of Correctly Classified Pixels 

× 100  (1)
 

Total Number of Reference Pixels 

 

Along with overall accuracy, the accuracy of individual classes was also calculated for each class in each map. 

There were two methods used: user accuracy and producer accuracy. The percentage of correctly identified pixels 

to total reference pixels in each category is known as the producer's 

accuracy. It accounts for the error of omission, which refers to the actual land cover type that was mistakenly 

left off the classified map. By dividing the total number of classified pixels in each category by the number of pixels 

that were correctly identified, the user's accuracy is determined (Pal and Ziaul, 2017). 

The following formula is used to calculate the accuracy of the producer and the user: 

 

 

 

 

 

A substitute measurement suggested by Verma et al. (2020) is the Kappa coefficient (K), which is utilized in 

addition to overall accuracy. Kappa coefficient (K) was calculated by dividing the tota l number of correctly 

classified pixels in the verification classes by the total number of pixels, and then subtracting the total number of 

ground verification pixels in each class (column total) times the total number of classified pixels in each class (row 

total) added together across all classes (sum of row total * column total) and dividing by the total number of ground 

verification pixels in each class (column total) times the total number of classified pixels (Pal and Ziaul, 2017; 

Choudhury et al. 2019). Kappa value lies between 0 and 1 (Hua and Ping, 2018). Kappa coefficient (K) is formally 

expressed as a percentage. The coefficient was calculated using following equation. 

Kappa Coefficient (K) 
(TP × TCP) − ∑(Column Total × Row Total) 

× 100 (4)
 

TP²− ∑ (Column Total × Row Total) 

 

Where, TP = Total Pixels, and TCP = Total Corrected Pixels. 
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3.3 Change detection of LULC 

Information on land-cover and land-use change is useful for a variety of applications, such as deforestation, 

damage assessment, disaster monitoring, urban growth, planning, and land management. Altering the physical 

dimension of the spatial extent of the various LULC classes, LULCC affects many secondary processes that 

ultimately contribute to the degradation of the earth's ecosystems. Change detection frameworks use multi-temporal 

datasets to qualitatively analyze these changes. For a deeper understanding of change mechanisms and for predicting 

the impact of change 

on the environment and associated ecosystems at various scales, an inventory and monitoring of LULCC are 

essential (Chunghtai et al., 2021;Turner et al, 1995) 

Change detection is a technique for analyzing site-specific multi-temporal imagery to look for short or long term 

LULCC (Lillesand et al., 2004). A broad consensus exists in the literature regarding the definition of remote sensing 

for change detection. A broad consensus exists in the literature regarding the definition of remote sensing for change 

detection. Change detection is a procedure used in GIS that analyzes how an area's features have changed over the 

course of at least two distinct periods. Comparing aerial photographs or satellite images of the area obtained at 

various dates is a common method of change detection. Change detection has been used extensively to evaluate 

shifting agriculture, deforestation, urban growth, and the effects ofnatural disasters like earthquakes and tsunamis, 

and use and land cover changes, among other things (Ramasubramanian, 2009). Singh 1989 defines change detection 

as the process of detecting differences in a situation or with an object or feature at a location for different image 

atdifferent times. The four components of these definitions are method, place, images, and result. Each of these 

factors has its own potential effects on the results of change detection. In accordance to Lu et al., 2004, they are as 

follows: 

a. The precision of geometric registration between multi-temporal images. 

b. Adjusting multi-temporal images in perspective of other aspects 

c. The quality of data; 

d. Degree of complexity of landscape and environment in the study area; 

e. Techniques or algorithms for change detection 

f. Method for classification and change detection scheme 

g. The analyst's degree of expertise 

h. Knowledge of the research topic and study areas; 

i. Funds and time availability 

We performed the LULC change detection analysis after collecting the data, pre-processing it, supervised 

classifying it, assessing its accuracy, and assessing its change detection. Change detection statistics between the 

years 2002–2012, 2012–2020, and 2002–2022 have been created for this study. The percentage change was 

calculated by multiplying the observed differences by the total changes and dividing the result by 100 to determine 

the tendency of variation (Gajbhiye and Sharma, 2012). Mathematically, 

Percentage Change = (Observed Change/ Sum of Change) *100 (5) 

3.4 Calculation of normalized indexes 

The high spatiotemporal resolution and near real-time observation capabilities of remote sensing make it a 
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highly effective tool for monitoring across vast areas (Wardlow et al. 2012). 

To determine the relationship between LST and vegetation, Yue et al. (2007) and Wei et al. (2008) used the 

Greenness Vegetation Index (GVI), Soil Adjusted Vegetation Index (SAVI), Normalized Difference Vegetation 

Index (NDVI), Ratio Vegetation Index (RVI), and the Normalized Difference Built-up Index (NDBI). Different 

studies by Lawrence and Chase (2007);James and Charles (2014); Adeyeri and Okogbue (2014); Vlassova and 

Pe ŕez-Cabello (2016) determined that vegetation factors had a significant impact on the LST and energy balance of 

the areas under consideration. 

3.4.1 Calculation of NDVI 

The Normalized Difference Vegetation Index (NDVI), measures vegetation greenness and is helpful in 

determining vegetation density and evaluating alterations in plant health. The Normalized Difference Vegetation 

Index is derived from reflectance measurements in the near infrared (NIR) and red portions of the spectrum. It is 

the difference between NIR and visible red reflectance values adjusted over reflectance (Burgan and Hartford, 1993). 

Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 

Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) Collection 1 and Collection 2 scenes which have 

been processed to Landsat Level-2 Surface Reflectance products are used to create the Normalized Difference 

Vegetation Index (NDVI) products. To calculate the Normalized Difference Vegetation Index, subtracting the red 

band from near infrared and then dividing to near infrared plus red band. NDVI is calculated by following equation. 

 

 

 

 

Where, where RED and NIR stand for the spectral reflectance measurements acquired in the red (visible) and 

near-infrared regions, respectively. For Landsat 7 NIR is band 4 and RED is band 3 and for Landsat 8 NIR and RED 

is band 5 and band 4 respectively, which have been used to extract NDVI. Its value ranges from -1 to 1. 

Generally, dense vegetation that may comprise a forest can be expected in a pixel if there is much more 

reflected near-infrared radiation than visible radiation. Stronger implications for healthy vegetation greenness are 

indicated by higher NDVI values (Jones and Vaughan, 2010). Further research has demonstrated a clear correlation 

between the NDVI and the ability of plant canopies to capture energy. The negative values represent non-reflective 

surfaces like water, snow, clouds, and other non-vegetated areas, while the positive values represent 

reflectivesurfaces like a vegetated area (Burgan and Hartford, 1993). The temperature, moisture, and radiative 

characteristics of the earth's surface that determine LST have a direct relationship with vegetation (Weng, 2004). 

The primary objective of applying NDVI is to enhance the processing of data about vegetation obtained through 

remote sensing. According to studies, NDVI is useful for identifying evergreen and seasonal forest types, savannah, 

dense vegetation, non-forest, and agricultural fields (Pettorelli et al. 2005). It also helps to estimate various vegetation 

properties (Tian et al. 2017), biomass (Zhu and Liu 2015), chlorophyll content in foliage (Pastor-Guzman et al. 

2015), plant yield (Vicente-Serrano et al. 2016), vegetation coverage (Dutrieux et al. 2015), and plant stress (Chavez 

et al. 2016). These estimates are frequently obtained by comparing ground-measured values of these variables with 

remotely sensed NDVI values. The resilience of NDVI-related models is directly correlated with NDVI related 
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models (Butt 2018). 

3.4.2 Calculation of NDWI 

Remotely sensed data of vegetation and water from satellite is done using Normalized Difference Water Index 

(NDWI) (McFeeters, 1996). This kind of observation is employed mostly in the fields of agriculture and forest 

monitoring for evaluating the danger of fire, and it is especially appropriate in the context of environmental issues. 

NDWI is more sensitive to fluctuations in the water content of foliage in vegetation canopies than NDVI, yet it is 

less sensitive to changes in atmosphere (Gao, 1996; Wu et al., 2009).The NDWI is expressed as follows (McFeeters, 

1996), 

 

 

Where, Green is a green band such as Thematic mapper (TM) band 2, and NIR is a near infrared band such as 

TM 4. By utilizing green wavelengths, this index aims to increase water reflection, decrease the low NIR reflectance 

of water features, and enhance the high NIR reflectance of vegetation and soil features. Hence, although plant 

and soil typically have zero or negative values so they are suppressed, water features typically have positive 

values and are consequently boosted (McFeeters 1996). The lower values all the way to -1 are the telltale signals 

of drought 

or non aqueous surface unless the area of intrest is the dry Surface and the higher values approaching +1 

typically appear blue and correspond to either a high water content or surface. 

3.4.3 Calculation of NDBI 

There are many indexes available for built-up area analysis. Normalized Difference Built-up Index (NDBI) is 

the most frequently used indices for analyzing built-up areas. Normalized Difference Built-up Index values lie 

between −1 and +1, low NDBI represent water bodies and larger positive NDBI values represent built-up or 

impervious concrete surfaces. 

As suggested by Zhang (2006), to calculate NDBI, it was calculated by using following equation: 

 

 

Where NDBI is normalized difference built-up index, NIR is near infrared band 5 and MIR is middle infrared 

band 6 of Landsat 8 data. For Landsat 7 NIR Band 4 and MIR is Band 5. The derived Normalized Difference Built-up 

Index values were further used to determine correlation coefficient 

(r) between NDBI vs. LST and NDVI vs. NDBI and to give information to urban development planners to 

facilitate protection of urban environments. 

3.5 Land surface temperature 

3.5.1 LST related information 

The effective radiating temperature of the earth's surface is controlled by a fundamental factor called LST, which 

is a component of terrestrial thermal behavior (Kayet et al., 2016). It has a significant impact on hydrology, 

meteorology, and climatology and is a crucial component of both climate and biodiversity (Li et al., 2013). The 

World Meteorological Organization's Global Climate Observing System (GCOS) and NASA have both designated 
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it as one of the most significant earth system data records (EDR), a legacy national weather service (NWS) 

requirement, and an essential climate variable (ECV) (Tomlinson, 2011). Hulley (2019) says, The uses of LST 

have grown over time beyond its initial function as a climate change indicator. It serves as a crucial indicator for 

the energy redistribution at the land-atmosphere interface, soil moisture, plant water stress, drought monitoring, 

LULCC, urban heat island effects, heat stress, epidemiological investigations, and more. Furthermore, with the 

introduction of a new generation of hyperspectral sensors like the Infrared Atmospheric Sounding Interferometer 

(IASI) and Cross-Track Infrared 

Sounder (CrIS), retrieval techniques have gone further than the typical thermal infrared and electromagnetic 

waves (Tran et al., 2017). The estimation of LST from remotely sensed thermal infrared/operational land imager 

data has attracted much attention among the users (Hooker et al., 2018; Solanky et al., 2018). LST retrieval from 

regional, national and global remote sensed data offers unparalleled benefits and is considered one of the most 

popular techniques for researching the effects of urban heat islands (Jiang & Lin, 2021). Geometrically corrected 

Landsat Thermal Infrared (TIR) band 6 and Landsat 8 Thermal Infrared (TIR) band 10 and 11 are used to calculate 

LST (Khin et al., 2012). Based on brightness temperature and the land surface emissivity, which is computed using 

the split window algorithm, one may derive the LST for a particular region (Rajeshwari and Mani, 2014, Md Shahid, 

2014). The distinction between the surface equilibrium state and vigorous/vital for various applications is reflected 

by LST. LST is sometimes referred to as surface temperature monitoring using remote sensing and pixel-derived 

observations (Paramasivam, 2016). Urban LST characteristics are determined by the surface energy balance, which 

is controlled by factors like orientation, clouds and air, exposer to the sun, radiative ability to reflect solar and 

infrared energy as well as ability to transmit infrared energy, availability of surface moisture to evaporate,and surface 

roughness (Voogt, 2000). 

LULC is one of the main causes of the rise in LST, and several researchers conclude that uncontrolled use of 

natural assets and land-use change are the main causes of the rise in LST. Oluseyi et al., 2011, studied that there are 

spatial linkages between alterations and the traits of specific land-use classifications or categories. At different 

latitudes, the impact of LULC shifts varies on LST, for instance in tropical temperate South Asia and East Asia 

(Shukla, 1990). The relationship between biodiversity, environmental degradation, and changes in land use in East 

Africa demonstrates that the region's original land cover was converted to grazing fields and residentia l areas 

(Matimal et al., 2009). As per Yue et al. (2007), the link between NDVI and LST is integrated by using Landsat7 

ETM+ data in Shanghai. The outcome demonstrates that different LULC classes have very diverse effects on the 

normalized differential vegetation index (NDVI) and LST determined by the Enhanced Thematic Mapper Plus sensor 

in the Shanghai urban environment. Due of their simplicity, physical basis, and operational capability, thermal 

sharpening models based on land-surface temperature and vegetation index (LST) have gained considerable 

attention. These models include the normalized difference vegetation index (NDVI). Normalize difference water 

index (NDWI), Normalized difference build-up index (NDBI) and fraction vegetation cover (FVC). Utilizing the 

DisTrad thermal sharpening model, Eswar et al., 2016 compare the relative performance of five 

different VIs—NDVI, FVC, the normalized difference water index (NDWI), soil adjusted vegetation index 

(SAVI), and modified soil adjusted vegetation index (MSAVI), over natural as well as agricultural landscapes in 

India. 

3.5.2 Process of LST Calculation 

For Landsat 7 

Conversion of DN to Radiance 
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Lλ = (LMAXλ – LMINλ)/ QCALMAX – QCALMIN x (DN – QCALMIN) + LMIN λ (9) 

Where, 

Lλ = TOA spectral radiance (Watts/(m2 * srad * μm) Qcal  = Quantized calibrated pixel value in DN 

LMAX λ = maximum spectral radiance for the band LMIN λ = minimum spectral radiance for the band 

QCALMAX = maximum quantized calibrated pixel value (corresponding to LMAXλ) in DN QCALMIN = 

minimum quantized calibrated pixel value (corresponding to LMINλ) in DN DN is the pixel DN value 

Convert Radiance into Top of Atmosphere BT (in Kelvin) 

T = K2/ In (K1/ Lλ + 1) (10) 

Where, 

T = TOA brightness temperature in Kelvin, 

Lλ = TOA spectral radiance (Watts/(m2 * srad * μm) K1 = Calibration constant 1 

K2 = Calibration constant 2 

Convert Degree Kelvin into Degree Celsius 

The resulting temperature in the Kelvin scale will be converted to Celsius scale using the given equation, 

C = T – 273.15 (11) 

Where T = Kelvin temperature and C = Celsius temperature. 

The value 273.15°C is the absolute zero temperature for converting the Kelvin scale to the Celsius scale. 

 (1) Calculation of TOA Spectral Radiance 

In order to derive TOA spectral radiance from a Landsat satellite image, equation below wasused (USGS, 

2016). OLI/TIRS data can be converted to spectral radiance using the radiance rescaling factors provided in the 

metadata file by using the given formula below: 

Lλ = ML * Qcal + AL (12) 

Where, Lλ is TOA spectral radiance (Watts/ (m2* srad * μm); ML is Band-specific multiplicative rescaling 

factor from the metadata (RADIANCE_MULT_BAND_x, where x is the band number).Qcal is Quantized and 

calibrated standard product pixel values (DN): Corresponds to band 10. AL is Band-specific additive rescaling 

factor from the metadata (RADIANCE_ADD_BAND_x, where x is the band number). 

Conversion of TOA Spectral Radiance to Brightness Temperature 

After obtaining TOA spectral reflectance radiance, brightness temperature was calculated according to equation 

below (Jim´enez-Munoz ˜ et al., 2014; USGS, 2016.The TOA Spectral Radiance data is then converted to brightness 

temperature (BT) using the thermal constants(K1 AND K2) provided in the metadata file. According to Pal and 

Ziaul (2017), 0℃ is equivalent to 

273.15 K, the units of BT is in Kelvin, hence it is necessary to convert the units to degree Celsius by subtracting 

273.15 from the calculated BT. 

BT = (K2 / (ln (K1 / Lλ) + 1)) − 273.15 (13) 
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Where, K1 is Band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_x, 

where x is the thermal band number); K2 is Band-specific thermal conversion constant from the metadata 

(K2_CONSTANT_BAND_x, where x is the thermal band number). 

Calculation of Proportion Vegetation (PV) 

The Carlson and Ripley (1997) equation was used to determine the Pv from the NDVI values obtained above. 

Fractional vegetation cover (FVC) is another word for vegetation cover. Pv values for areas with dense vegetation 

are 1, while Pv values for bare soil are 0. Therefore, Pv was determined from NDVI using the NDVI Threshold 

method. 

Pv= (NDVI -NDVI min ) / (NDVI max- NDVI min)2 (14) 

Where, 

Pv is proportion of vegetation; NDVImin is the minimum value of NDVI; NDVImax is maximum value 

of NDVI. The lowest and maximum values of an NDVI image are obtained from pixel value. 

Calculation of Land Surface Emissivity (LSE) 

The amount of radiance released by a black body at a given temperature and the percentage of radiance emitted 

by body temperature are referred to as the land surface emissivity (Zhao-Liang et al., 2013). As a result, the Pv 

layer provided the land surface emissivity, which was then utilized to calculate LST in equation. 

ε = 0.004 * Pv + 0.986 (15) 

Where, ε is land surface emissivity; Pv is the proportion of vegetation. 

Calculation of LST 

 

Finally, Stathopoulou and Cartalis (2007) using the band 10 brightness temperature (BT) and land surface 

emissivity (ε) calculate the LST of the whole image following an equation. Using extraction by mask function in 

Arc Map 10.7 (Sun et al., 2012). 

LST = BT/ 1+w*(BT/p)* ln (e) (16) 

Where, BT is at-satellite brightness temperature; w is wavelength of emitted radiance (11.5um); p is h*c/s 

(1.438*10^-2mk). The value of p is 14380. 

  4. Results and Discussion 

4.1 LULC and its accuracy assessment 

4.1.1 LULC classes 

In most cases, LULC classes are selected and fixed in accordance with the needs of a particular study or 

application. In this study, the study area has been categorized into seven LULC classes. The seven LULC 

classification used in this study are Barren land, Built-up area, Cropland, Forest, Grassland, Shrub and Water bodies. 

Table 2 above provides a thorough overview of these classes along with their distinctive characteristics.  

From Figure 3, Figure 4 and Figure 5, we can conclude that the most of the cropland is converted into built-up 
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area over the time periods. Built-up area in 2002 and 2012 covered 7% of the area in Chitwan District. On the other 

hand, by 2022 the build-up area was increased by 11% as compared to 2002 and 2012 as shown in Table 3. Grassland 

was also decreased from 2002 to 2022 by 4%. Shrub area in 2002 was covered with 2%, but in 2012 its area 

decreased by 1% as compared to 2002 but after 2012 shrub area is increased and occupies with 6% of the total area 

by 2022. For the time being of the study period, Barren land has been decreased from 31.48 km2 to 17.81 km2 from 

2002 to 2012 and 14.15km2 from 2012 to 2022. In addition waterbodies is also been decreased by 

5.51 km2 in the study area by 2002 to 2022. 

 

Figure 3: LULC map of year 2002 of Chitwan District 
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Figure 4: LULC map of year 2012 of Chitwan District 

 

 

Figure 5: LULC map of year 2022 of Chitwan District 

As given in table below (Table 3), in the year 2002, the forest area was 62% while cropland is covered by 21%; 

the built-up area was covered by 7% while grassland covered about 5%, shrub land by 2% while Barren land and 

water bodies is followed by 1% each. In the year 2012, forest area was covered by 67%, followed by cropland 16%, 

the built-up area was covered by 7% while the area was covered by shrub is 6% and grassland is 2 % and area 

covered by barren land, water bodies is 1%,1% and 1% respectively. On the other hand, in the year 2022, 

forest area 

occupy 64% of area, followed by 18% built-up area and 10% cropland; the shrub area was covered by 6% 

while the other classes like Barren land, grassland and waterbodies area cover an area of 1% each class. The 

area under the forest indicated the increasing trend from 2002 to 2012 by 5% and from 2012 to 2022 it has decreased 
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by 3 % in the study area. Meanwhile, area of crop land is shrinking from 2002 to 2022 by 11%. 

Table 3: The LULC area distribution of year 2002, 2012 and 2022 of Chitwan District 

 

LULC 
classes 

2002 

Area 

(Km2) 

 

% 

2012 

Area( km2) 

 

% 

2022 

Area (km2) 

 

% 

Barren 
Land 

31.48 1% 18.31 1% 13.57 1% 

Built-up 

Area 

152 7% 165.48 7% 412.48 18% 

Crop 

Land 

475.29 21% 360.5 16% 223.73 10% 

Forest 1393.51 62% 1492.31 67% 1424.77 64% 

Grass 

Land 

107.73 5% 40.38 2% 15.01 1% 

Shrub 48.15 2% 136.19 6% 127.12 6% 

Water 

Bodies 

30.23 1% 25.22 1% 21.71 1% 

Total 
 

2238.39 
100 

% 
2238.39 100% 2238.39 100% 

Analyzing LULC allows for the examination of landscape patterns and features, which are crucial for 

comprehending the structure and conditions of lands as well as the dimension of ecological systems (Zhu et al., 

2021). Understanding the extent of LULC is of the utmost importance since it is a key contributor to environmental 

changes such as biodiversity loss, habitat destruction, soil depletion, landslides, flooding, global climate change, 

and the impact of invasive and alien plant species (Wu, 2019; Chamnling & Bera, 2020). 

4.1.2 Accuracy assessment 

Classification accuracy is often impacted by the lack of fine details in the input. When images are used, the 

resolution of the image can affect the overall accuracy due to the need for generalizations. As a result, errors are 

always expected. In order to maintain accuracy, it is important to use high resolution images and pay attention to the 

subtleties and nuances of the input. With a focus on the details, it is possible to increase the accuracy of the 

classification. For ensuring the effective use of land cover maps the inaccuracies must be quantitatively justified to go 

with statistics produced from remote sensing analyses (Sherefa, 2006). 

Table 4: Accuracy assessment of LULC classification of 2002 using error matrix 

LULC 

Classes 

 

Forest 

 

Cropl

and 

 

Water 

Built- up 
 

Shrub 

Barren 

Land 

 

Grassland 

 

Total 

User 

Accuracy 

% 

Forest 38 0 0 0 1 1 1 41 92.68 

Cropland 0 32 0 4 1 0 0 37 86.49 

Water 1 0 33 0 1 2 1 38 86.84 

Built up 0 3 0 36 0 0 0 39 92.31 
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Shrub 2 1 1 0 32 2 1 38 84.21 

Barren 

Land 

2 1 1 1 0 28 0 33 84.84 

Grassland 1 0 0 0 2 1 22 27 81.48 

Total 44 37 35 41 37 34 25 
Overall 

Accuracy 

Cohen’s 

Kappa 

Producer 86.36 

Accuracy % 
86.49 94.29 87.8 86.49 82.35 88 87.35% 0.85 

 

Table 5: Accuracy assessment

 

of LULC classification of 2012 using error matrix 

 

 

LULC 
Forest Cropland Water Builtup Shrub 

Barren 
Grassland Total 

User
 

Classes      Land   Accuracy% 

Forest 34 0 0 0 2 1 1 38 89.47 

Cropland 1 28 0 3 0 0 1 33 84.75 

Water 0 1 27 0 0 2 1 31 87.1 

Built up 0 4 0 24 1 0 0 29 82.75 

Shrub 1 1 0 0 32 1 1 36 88.89 

Barren 

Land 

0 1 2 2 0 27 0 32 84.38 

Grassland 1 0 1 0 1 0 26 29 89.66 

Total 37 35 30 31 36 31 30 Overall 

Accuracy 

Cohen’s 

Kappa 

Producer 91.89 

Accuracy  % 
80 90 90.32 88.89 87.1 86.67 86.84% 0.84 

 

 

表 6 
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An error matrix is the most standard and widely used technique by researchers to evaluate classification 

accuracy (Congalton et al., 1999; Sherefa 2006). For this specific study, various accuracy measures including overall 

accuracy, user accuracy, producer accuracy and Kohen’s Kappa Coefficient are calculated. While user accuracy and 

producer accuracy identify the correctness of each individual classification, overall accuracy shows the accuracy of 

the entire LULC classification (Russell and Congalton, 2013). The likelihood of agreement in a categorized data 

set is indicated by the Cohen's kappa coefficient (Fleiss et al., 1969). 

The classification techniques and methods of acquiring images usually result in some errors in land cover maps 

(Ogunjobi et al., 2018). For each of the 2002, 2012 and 2022 post classified images, the accuracy evaluation tool of 

the supervised classifier randomly produced 253, 228 and 263 reference points using stratified random sampling 

was taken. Three error matrix tables for the year 2002, 2012 and 2022 are created in this study for the final LULC 

classification. The LULC classification shows an overall accuracy of 87.35%, 86.84% and 85.32% during 2002,  

2012 and 2022, respectively, which are above the usual benchmark of 85% (Eniolorunda et al. 2016). User’s 

accuracy and producer’s accuracy are obtained from error matrix table of 2002, 2012 and 2022 as shown in Table 

4, Table 5 and Table 6 below. During 2002, 2012 and 2022, the Cohen’s Kappa 

coefficient shows 0.85, 0.84 and 0.85 respectively. 

4.2 LULC Change Detection from 2002 to 2022 

Various LULC change detection studies take into account two clearly separated years for this procedure. The 

LULCC was analyzed and detected from the Landsat images at 10 years interval since 2002 to 2022. The change 

detection analysis presented in this paper is based on the statistics extracted from the classified land use and land 

cover maps of the Chitwan District of the year 2002 to 2012, 2012 to 2022 and 2002 to 2022. Various LULC change 

detection studies take into account two clearly separated years for this procedure. 
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Figure 6: LULC change map of year 2002-2022 of Chitwan District 

 

 

Figure 7: LULC Change map of year 2012-2022 of Chitwan District 
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Figure 8: LULC Change map of year 2002-2022 of Chitwan District 

 

 

Bodies 
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The results of the LULCC show that there is a significant change in LULC of the region from 2002 to 2022 

(Figure 6, Figure 7 and Figure 8).In the last two decades, the built-up area had the most 

influence on the LULC change in the study area. A steady increment of the built-up area occurred each decade, 

with the highest increment of 11.03% observed from 2012 to 2022. Cropland was observed to be in continuous 

declining trend -11.24% decrease observed in 2002–2022. Forest was in a increasing trend between 2002 and 2012 

but later it declined by -0.32% in the last decade. Within the period of 2002–2022, the built-up area was significantly 

increased by 11.64%. In the same period, barren land, cropland, grassland and waterbodies were decreased by -0.80%, 

-11.24% and -0.38%, respectively. 

LULC changes occurred almost in the whole study area, except for the most part of Chitwan National Park and 

the northeast areas. In the Chitwan district, the percentage of forest cover didn't change consistently over time; 

instead, there were irregular fluctuations. From 2002 to 2012, there was a continual increment in the amount of 

forest cover, which was thereafter gradually reduced until 2022. In a similar study conducted by Stapp et al., 2015, 

it was found that between 1989 and 2005, the overall forest cover in all VDCs in the bufferzone of CNP decreased 

by 9.9%, and it then increased by 7.5% between 2005 and 2013; the net loss from 1989 to 2013 was 3.1%. 

Furthermore, Panta et al., 2008 found 7.95% decrement of forest coverage from 1981 to 2001 in the district. 

In Nepal, community-based forest management approach has received widespread recognition as the most 

effective method for fostering participatory forest governance and management. This initiative in Nepal is a part of 

a global movement toward forest decentralization that began four decades ago and offers local communities the 

capacity to manage and utilize forest resources legally. The country's forest cover increased from 26% to 45% 

between 1992 and 2016. Even though the district is adopting a community-based approach to forest management, 

there are still a number of factors that can be attributed for the reduction in Chitwan's forest cover. The Siwaliks  

zone, which includes the lowlands of Chitwan district, frequently engages in the repeated and unsustainable 

harvesting of non-wood forest products. This practice includes cutting down trees and saplings for timber and poles 

(often illegally) as well as collecting firewood for domestic use and sale (WWF, 2013). 

In terms of built-up area, due to the growing population, this land use class has increased rapidly by 11.64% in 

the Chitwan district in 2022. Various variables, however, are to blame for the rise in Chitwan’s urban area. The study 

region is located near the geographical center of Nepal in the eastern bank of the Narayani River, rendering it a 

financially viable zone. In a study in the western Terai conducted by Rimal et al.,(2020) it was discovered that from 

1989 to 2016, more 

agricultural lands were converted to urban lands in Chitwan. A key factor contributing to abrupt and severe 

changes in the built-up over the years is the growing population pressure brought on by migration and settlement. 

From 472,048 to 719,859, the population of the Chitwan district has nearly doubled since 2001 (National Statistics 

Office, 2023). People typically migrate from the Hill to the Terai region because of food shortages, prospects, 

difficult lifestyles, poverty, and terrible climatic and relief circumstances. In Nepal's mid-hills, about one-third of 

the agricultural land has already been abandoned, and many people have moved into urban and semi-urban regions 

of Terai (Gazzard et al., 2016). Even the whole population of the hill and mountain regions (46%)is lesser than that 

of the Terai (54%). 

The another land use class that experienced substantial change is crop land/agricultural land. The substantial 

loss of agricultural land is may be as a result of land degradation, such as erosion, which is the movement of soil 

components by wind or water. Land loss in agriculture dates back to the 20th century. Even during the 1950s, 

significant amounts of farmland were destroyed in Chitwan district, that led to an increase in food shortages, poverty, 

and landlessness (Agergaard, 1999). Agricultural land abandonment has possessed the greatest threat to food 
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security and agriculture (Paudel et al., 2016). Rural regions of Chitwan, which had significant agriculturalland 

coverage, has already been transformed into peri-urban and urban areas as a result of the rapid urban population 

growth, and this trend is still going unabated (Timilsina et al., 2019). 

The increase in shrub land in Chitwan district in 20 years provides multiple indications. Shrub land being 

regarded as an eventual consequence of deforestation and degradation (Adeyemi & Olowo, 2022). On the other 

hand, shrublands being those that resulted from human land use conversions of previous natural vegetation types 

(Goldstein & DellaSala). In addition to altering energy fluxes, regional climate, soil-atmosphere exchange of water, 

carbon, and nutrients, and ecological interactions between species, a significant increase in shrub cover modifies 

the organization of ecosystems (Myers-Smith et al., 2011). The rest of the land use classes in the Chitwan has stable 

change. 

4.3 Changes of normalized indices 

4.3.1 NDVI Changes 

NDVI enhances vegetation and tends to be positive whereas water body features have negative  values, and 

soil may have zero values nearby. Only red band and NIR band of Landsat images 

are used for NDVI analysis. The NDVI model derived through Landsat images of 2002, 2012, and 2022 as 

shown in Figure 9, Figure 10 and Figure 11. Arc GIS 10.7 software was used to identify vegetation cover. In 2002, 

NDVI values ranges from −0.45098 to 0.758865; NDVI values during 2012, it ranges from −0.195636 to 0.578857, 

whereas for NDVI values of year 2022 ranges from -0.0918861 to 0.497717, which means the vegetation cover, 

has decreased in 2022 when compared to 2002 in Chitwan District. Higher NDVI indicated that places with the 

most vegetation and forest tended to be the most productive areas. Lower NDVI values, on the other hand, indicated 

that there are less productive places, such as bare soil, waterbodies, and built-up areas. As a result, the research 

area's most prolific and productive area exhibited a significant decline on the NDVI map. The study results revealed 

that high vegetative areas show low LST and vice versa in the study area over the study period. 

Monitoring the dynamics of vegetation coverage is essential for determining the status of overall vegetation 

and creating strategies for long-term forest management. The NDVI value of Chitwan district has gradually 

decreased over the years. As per the results, Chitwan had dense green vegetation in 2002 but the vegetation gradually 

became sparse till 2022. According to a study of vegetation density using the NDVI in the Chitwan National Park 

from 1978 to 1999, it was found that the highly vegetated area was reduced by 5.03 km2 in less than 10 years (Baidya 

et al., 2009). In contrast, Dai et al., 2021 studied the green vegetation dynamics of community forests in Chitwan 

from 1988 to 2018 and discovered that all forests have been steadily becoming greener since their establishment,  

with the average green vegetation cover of all forests rising from around 30% in 1988 to above 70% in 2018. The 

authors credited this improvement in the forest coverage to the successful implementation of community-based 

forest management. This might be due to NDVI being susceptible to changes in the atmosphere, including clouds, 

haze, and aerosols, which can impact the reflectance of light in the visible and near-infrared (NIR) wavelengths. It 

might be challenging to correctly interpret NDVI images because of mistakes in NDVI values. 
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Figure 9: NDVI map of year 2002 of Chitwan District 

Figure 10: NDVI map of year 2012 of Chitwan District 

 

Figure 11: NDVI map of year 2022 of Chitwan District 
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4.3.2 NDWI Changes 

The NDWI is identified to monitor the presence of water bodies. An index value of +1 indicatesa higher water 

content, and a value of -1 indicates an impervious area. There are scatter distribution of small to medium sizes of 

water bodies in Chitwan district. The spatial distribution of NDWI for 2002, 2012 and 2022 is shown in figures 

(Figure 12, Figure 13 and Figure 14). There are the changes in NDWI value during the study period. The resultant 

minimum and maximum NDWI values ranged from -0.505247 to 0.191314, -0.497736 to 0.147499 and - 0.442932 

to 0.117893 on 2002,2012 and 2022 respectively in the study area. The study results show a decrement in positive  

NDWI values in 2022, indicating water bodies' shrinkage due to various reasons. It is noteworthy that the NDWI 

was decreased from 2002 to 2022. 

 

Figure 12: NDWI map of year 2002 of Chitwan District 

Figure 13: NDWI map of year 2012 of Chitwan District 
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Figure 14: NDWI map of year 2022 of Chitwan District 

 

4.3.3 NDBI Changes 

The minimum and maximum NDBI values of the year 2002, 2012 and 2022 ranged from - 0.641797 to 

0.390728, -0.727273 to 0.441176 and -0.402645 to 0.49178 respectively (Figure 15, Figure 16 & Figure 17). There 

are notable changes in NDBI value during the study period. The built-up and barren rock areal coverage have 

increased in 2022 compared to 2002. 

A declining populations trend was evident in Nepal's hill and mountain regions according to the most recent 

census, and 32 of the country's 77 districts resulted in negative population growth as a result of the ongoing 

migration of Nepali villagers to the urban area (CBS, 2021). Because of geographic variations in labor demand, 

diversity in resource allocation and distribution, fertile land, and easy access, the cities near the foothills of the Terai 

displayed expanded built-up areas (Gartaula and Niehof, 2013). In particular, after the liberalization policy in 1990 

that permits unrestricted trade between the two countries, cities located close to the Indo-Nepal border experienced 

tremendous growth as more people moved there. 
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Figure 15: NDBI map of year 2002 of Chitwan District 

 

 

Figure 16: NDBI map of year 2012 of Chitwan District 

Figure 17: NDBI map of year 2022 of Chitwan District 

4.4 Land surface temperature changes 

In terms of LST, the changes have been significant over time. Based on Landsat thermal bands in 2002, 2012, 

and 2022, the spatial distribution of LSTs was calculated (Figure 18, Figure 19 and Figure 20). In 2002, the highest 

temperature found was 35.66◦C and the lowest was 12.88◦C (Figure 18). In 2012, maximum temperature was 38.47◦C 

and minimum was 16.64◦C (Figure 19). During 2022 the uppermost value of temperature was analyzed 40.96◦C, 

whereas the lowermost was 18.52◦C (Figure 20). 

Overall temperature increased by 5.33◦C from 2002 to 2022 and changes found a rise of 2.81◦C from 2002 to 

2012 and 2.49 ◦C from 2012 to 2022. The lowest temperature in 2002 was 12.88◦C and in 2020, it was 18.52◦C. In 

30 years, a drastic change in temperature occurred. The lowest value change was 35.64◦C esteeming from 12.88◦C 

in 2002 to 18.52◦C in 2022. From the analysis it can be concluded that the trend of LST has been gradually increasing 
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from 2002 to 2022 in the study area (Figure 21). 

Due to increasing rate of urbanization in Chitwan District, there is high rate of increase in the number of 

vehicles and factories resulting air pollution on the one hand. In other hand increasing proportion of the alphas and 

concrete road, high buildings, less greenery in the core urbanized area of Bharatpur Metropolitan and Ratnanagar 

municipality. These factors directly affected to the LST of the Chitwan district. A mountainous nation like Nepal is 

greatly impacted by global warming, especially in highland areas, according to studies that show the LST is raising 

worldwide (Chaudhary and Aryal, 2009). 

 

 

Figure 18: LST map of year 2002 of Chitwan District 
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Figure 19: LST map of year 2012 of Chitwan District 

Figure 20: LST map of year 2022 of Chitwan District 

 

Figure 21: LST Trends over time 

 

As a result of this study not only maximum LST is increasing but also minimum LST is increasing gradually 

in the study area over the time periods. In relation to LULC, the LST varies. Strong microscale patterns that are 

related to land categories including streets, vertical structures such as walls and roofs, trees reflectivity can be found 

in the LST of urban built-up areas (Roth et al., 1989). Thus, the local variability of LST of study area is highly 

variable due to the presence of forest, built-up area, agriculture land, water bodies and other land use classes. In 

order to raise the LST, LULC are crucial. But the LST can be impacted by a wide range of factors. These are the 

focus of subsequent research. From 2002to 2022, the proportion of LST is rising everywhere. The land's altitude, 

slopes also plays an essential part in determining the temperature of the land's surface. It was discovered that the 

LST of the inner city is higher than that of the surrounding city, the Chure Range, and the forest areas. In the study 

conducted by Magar et al., 2020 In comparison to other LULC surfaces, new built- up areas with compact settlement 

areas have higher LSTs than the less urbanized and neighboring areas, the city center has higher LST. With rising 

urbanization from 1999 to 2017, the LST has significantly increased. Although the ecological condition of the UHI 

effect is not currently in a severe state, the study's findings suggested that as urbanization continues to grow, the 

ecological situation in the Kathmandu Valley may become worse in coming days. According Khin et al. (2012), 
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and Kerr et al. (2004), land-cover changes and haphazard use of natural resources are the main causes of the rise 

in LST in both rural and urban regions. 

4.5 LST Validation 

High temperature values were concentrated in the Chitwan District (Figure 22- Figure 24). The results of LST 

retrieval from Landsat shows a similar range in temperature during the study period. It was difficult to obtain a 

consistent average for climate measures in the study area. Based on the results of Landsat alone (Figures 18, 19 and 

20), it is difficult to ascertain the rise in temperatures relating to the deforestation pattern, land cover change pattern 

and the development of urban areas. Thus, the MODIS platform was used as a guide to show the rising temperature 

trends. 

 

Figure 22: 2002 MODIS Land Surface Temperature and Emissivity of Chitwan 

 

Figure 23: 2012 MODIS Land Surface Temperature and Emissivity of Chitwan 
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Figure 24: 2002 MODIS Land Surface Temperature and Emissivity of Chitwan 

 

Regarding a rising temperature, the results are satisfactory, and this tendency was noticed following 

comparison with the different datasets. The rate of change is clearly and continuously increasing even though it is not 

as rapid as first believed. Due to clouds, as demonstrated in 2002, 2012, and 2022, Although other years   provide 

a better picture   of land surface   temperature,   this is a result of inadequate atmospheric correction 

effects. It is difficult to understand the climate throughout this period due to patterns and atmospheric conditions. 

In contrast, MODIS provides a more realistic representation of the climate in Cameron Highlands because there 

are no absolute highs or lows, despite the fact that monthly data variability is lower. The Landsat 8 recorded a 

maximum temperature of 40.96 °C in the year 2022, compared to a maximum of 39.39 °C for MODIS. In 2002 and 

2012 maximum LST calculated from Landsat is 35.66 and 34.47 similarly minimum temperature is 12.89 and 

16.66.While for MODIS for maximum temperature is 33.83 and 36.78 and minimum temperature is 12.89 and 

16.66 for 2002 and 2012 respectively. Table 9 provides an overview of the information and displays the relationship 

through time. Although there is a large disparity between the two sensors, the pattern of rising temperatures makes 

it obvious that the reported temperature is accurate. 

 

Table 9: Comparison of LST from Landsat and MODIS validation estimation 

Year 
Landsat MODIS Landsat- MODIS 

 Max Min Max Min Max Min 

2002 35.66 12.89 33.83 20.95 1.83 -8.06 

2012 38.47 16.66 36.78 19.2 1.69 -2.54 

2022 40.96 18.52 39.39 26.59 1.57 -8.07 

4.6 Relation between normalized indexes and LST 

Variation of LST directly or indirectly depends on the LULCC and indexes. So, to investigate the impact 

of land cover change on LST the relationship between LST and different land cover indices such as NDVI, NDWI 

and NDBI is analyzed in this research using linear regression analysis (R2).Table 11 shows the statistics of the NDVI, 

NDWI, NDBI and LST in the study area of year 2002, 2012 and 2022. 
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Figure 25: Relation between LST and NDVI of 2002 Figure 26: Relation between LST and NDVI of 2012 

 

Figure 27: Relation between LST and NDVI of 2022 

The spatial distribution of NDVI for year 2002, 2012 and 2022 is decrease as shown in the Figure above 

(Figure 9-11). The correlation between NDVI and LST for the year 2022, 2012, 2002 is shown in the figure 25, 

figure 26 and figure 27 respectively. The regression line dramatically clarified the data, demonstrating a substantial 

inverse correlation between NDVI and LST. LST and NDVI are negatively associated to one another, with 

correlation coefficients of 0.28, 0.14, and 0.36 for the years 2022, 2012, and 2002, respectively, according to a 30-

year linear regression study (R2). These findings demonstrate that the impact of LST might lead to a reduction in 
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vegetation covered regions. The lower LST is associated with increased biomass of vegetation cover, as shown by the 

negative association between NDVI and LST. LULC fluctuations are directly impacted by the LST and NDVI. This 

study found that the NDVI values have dropped between 2002 to 2022 as a result of expanding metropolitan areas 

and shrinking vegetated areas. Maximum LST values reveal the lowest NDVI and vice versa, and they differentiate 

between areas with high LST and bare soil and areas with low temperature and more vegetation. 

 

 

Figure 28: Relation between LST and NDWI of 2002 Figure 29: Relation between LST and NDWI of 2012 

 

Figure 30: Relation between LST and NDWI of 2022 

Figure 12, figure 13 and figure 14 shows NDWI maps in 2002, 2012 and 2022, while figure 28, figure 29 and 

figure 30 shows the relationship between LST and NDWI. The results of the analysis in 2002 to 2018 showed a 

declining trend. The present result shows a significant and negative correlation 0.25, 0.19, and 0.17 in 2022, 2012 

and 2002respectively between LST and NDWI on the water bodies throughout the period. The LST value increases 

as the NDWI values decrease. This demonstrates that the temperature will drop when there is more green space. 

From the study we can say that NDWI is inversely proportional to LST. 

Finally, regression analysis shows that LST increased with the increase of built-up area i.e NDBI and vice 

versa. On the other hand, LST decreased with the increased NDVI and water body indices NDWI and vice-versa. 

According to Zhang et al. (2014), vegetation primarily lowers temperature through shade and evapotranspiration 

processes, which absorb heat energy and release water vapor. Water features can lessen the severity of UHI (Guha et 

al. 2018). Water bodies often have a lower temperature than other types of land usage (Zhang and Huang, 2015). 
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According to Rasul et al. (2017) and Chen and Zhang (2017), water bodies aid to reduce extreme heat and 

improve the cooling effects. 

Figure 31: Relation between LST and NDBI of 2002 Figure 32: Relation between LST and NDBI of 2012 

 

Figure 33: Relation between LST and NDBI of 2002 

The research studied the association between NDBI and LST and discovered a direct relationship between 

them. The maximum surface temperature in built-up regions was shown by NDBI results (Figure 15 to figure 17). 

Therefore, it has been expected that urbanization or built-upareas will cause significant changes in LST. In 

NDBI & LST correlation a strong positive relationship has been existed in each season i.e. R2 = 0.26, 0.29 & 0.60 

in 2022, 2012 and 2002 respectively as shown in figure 31, figure 32 and figure 33 . The observation finds that 

there is a positive correlation between NDBI and LST which indicates that the built-up region is the primary 

source of surface temperature changes and an urban heat island. LST and NDBI have a positive relationship, and 

NDBI indicates high LST values in the settlement and arid terrain area. The NDBI map of the present investigation 

is displayed above Figure 15, Figure 16 and Figure 17. According to the study's findings, built-area and barren land 

exhibit high LST, while forests, water bodies, cropland, shrub and grassland 

habitats exhibit relatively low LST. 
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5.1 Main conclusions 

Chapter 5 Conclusions 
The immense urbanization changes brought on by Chitwan's rapidly rising population and their effects on 

LULC and LST change are very concerning, particularly anticipating that the population growth will continue. 

Chitwan district have had a considerable LULC change throughout the course of the period, with steadily growing 

built-up areas and declining forest areas. Spatial-temporal trends of LULC, NDVI, NDBI, NDWI, and LST and 

their interrelationships were systematically analyzed using Landsat 7 ETM+ and Landsat 8 OLI/TIRS remote 

sensing data in Chitwan of year 2002, 2012 and 2022. There was a positive relationship between LST and NDBI, 

and negative relation between NDVI and NDWI with LST. Over the past 20 years, built-up areas have had a very 

significant effect on LST compared with other LULC classes in the study area. The increase in built up areas has 

drastically increased the LST by 5.3°C in 2022. The findings of this study will help city planners formulate activities 

including smart city technology, urban forestry to combat the urban heat island. Furthermore, this study will provide 

policymakers and local governments with information on developing sustainable urban development strategies and 

plans to prevent haphazard urban growth, while preserving agricultural lands in the city to promote local food supply 

and green spaces to ensure an uninterrupted flow of ecosystem services. 

5.2 Limitations of the study 

As part of the present study, all possible efforts were made to gather, interpret, and analyze primary and ancillary 

data. There are undoubtedly some drawbacks of utilizing Landsat imagery in Chitwan to explore the connection 

between LULCC and LST. As, Landsat image with a spatial resolution of 30 meters pixel may not be able to 

capture the fine-scale variability of LST and LULC in study areas, especially in densely populated areas and areas 

with mixed cropland and densely built areas. Landsat imagery can also be partially obscured by clouds, and there 

are limited cloud-free photos available for study. This may result in gaps in the LULCC and LST time-series, which 

can make it difficult to identify and understand long-term patterns. There may be considerable ambiguity in the 

computed LST and LULCC values because the Landsat sensors have undergone numerous calibration operations 

over the years. The accuracy of LST observations can also be impacted by changes in meteorological pressure, such 

as aerosol deposition, water vapor and presence of other 

gases and dust particles. Landsat imagery's data availability might be constrained, especially for particular 

periods or locations of interest. Long- term assessments of LULCC and LST trends may find this to be a substantial 

restriction. It can be difficult to evaluate LULCC and LST changes using Landsat imagery, especially in areas with 

a variety of land use or land cover types. Moreover, elements including the complexity of the terrain, spectral 

confusion, as well as the reliability of the reference points might have an impact on the classifying and interpretation's 

accuracy. There might be Absence of real-world data, especially for LST, can pose a major drawback. To assure the 

validity of LST data, remote sensing-derived LST must be validated with ground-based observations, however this 

might be difficult to accomplish in inaccessible or remote locations. 
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