
A Study on Identification of Ship Type by B-Scope Radar Image using AI 
 

Yasuyuki HIDAKA*, Hideaki NAKAMURA**, Tatsuto YAMADA***, 

Naoki MUTA*, Ryotarou OHNO**** and Shinji MIZUI* 

 

* Chuden Engineering Consultants Co.,Ltd, 2-3-30 Deshio,Minami-ku,Hiroshima city, Hiroshima, Japan 

** Graduate School of Sciences & Technology for Innovation Yamaguchi University, 2-16-1 Tokiwadai, 

Ube city, Yamaguchi, Japan 

*** Japan Coast Guard Academy, 5-1 Wakaba-cho, Kure city, Hiroshima, Japan 

**** Hiroshima National College of Maritime Technology, 4272 Higashino, Oosakikamisima-cho,Hiroshima,,Japan 

yhidaka@cecnet.co.jp 

 

Keywords : navigation instruments / measurement, AI technology, radar reflection intensity distribution 

 

ABSTRACT 

In a ship traffic survey, it is time taking to identify the type of small ships less than 500 GT those are not required 

to have AIS on board. Particularly in the nighttime survey when the visibility is limited, time to check the observed 

record is necessary. Also at night, it is concerned that the observation accuracy might be lower than day time as 

the identification of ship type tends to depend on the subjective judgement of the observation personnel in 

nighttime. In this study, aiming at the work and time saving ship traffic survey, we reviewed the possibility of ship 

type identification by the radar reflection intensity distribution using Artificial Intelligence (AI). At this stage, 

review on two methods of the ship type identification using AI technology are underway: one by camera images 

of the ships and the other by the radar reflection intensity distribution. In this paper, we report the result of the 

review using the radar reflection intensity distribution. 

 

1. Introduction 

Before a large-scale construction at sea starts or receiving a large ship at a port as its first call, a traffic survey is 

performed at the stage to review the safety of the construction or the ship’s operation.  

In such a survey, traffic volume at the area, operation routes, and the condition of fishing boats in operation at the 

area are mainly checked. Specifically, in addition to the check of the ship name, type and location using AIS, and 

the operation routes by installing a shipboard radar at a fixed shore point, a check is also performed by a so called 

“labor-intensive method” such as visual observation.  

This kind of survey is, in many cases, performed by time unit of 24 hours, 48 hours or 72 hours. For the large 

ships, it is possible to identify the ship structure and type by AIS on board almost around the clock. It is time taking 



to identify the type and structure of small ships in 

the nighttime when the visibility is limited, and the 

time to check the observed record is necessary. Also 

at night, it is concerned that the observation 

accuracy might be lower than daytime as the 

identification of ship type tends to depend on the 

subjective judgement of the observation personnel. 

In this study, aiming at the work and time saving 

ship traffic survey, we reviewed the possibility of 

ship type identification by the radar reflection 

intensity distribution (B scope data) using Artificial 

Intelligence. 

At present, the ship type identification is 

reviewed by two methods: one by camera image of the ship and the other by the radar reflection intensity 

distribution using AI.  

In this paper, we report the result of the review 

by the radar reflection intensity distribution. 

 

2. Observation system 

2.1 Observation system of radar reflection 

intensity 

The major specification of the X band radar and 

the outline of the observation system are shown 

respectively in Table 1 and Fig.1. This system has 

a feature of having a mode to output and record the video signals corresponding to the intensity of radar images. 

As in Fig.1, this system(1) has a function to convert the video signals of the shipboard radar by the A/D converter 

(image converter) and save them in a laptop computer as 12 bits digital data. The image converter incorporates the 

demodulated signal level converter and the sweep pulse level converting circuit. The output data from the 

demodulated signal level converter go to the A/D converter, the high-speed buffer memory, the high-speed DIO 

card and finally to the computer. 

 

2.2 Observed data 

The observation of the radar reflection intensity was performed by the afore-mentioned system aboard a small 

training ship “Hikari” (16 G/T, 17.4m LOA) owned by the National Institute of Technology, Hiroshima College 

(hereafter called “observation ship”) on September 25, 2021 at the area from Kure Port to Hiroshima Port. The 

object ships are mainly those under 500 G/T without AIS on board, and the radar reflection intensity was measured 

232 times receiving the data from several ships for one observation. During the measurement, the following items 

Table 1 Outline of radar in use 
 

S
pecification 

Antenna part 195cm（24rpm） 

Horizonal beam 
width 1.2゜ 

Vertical beam 
width 22゜ 

Pulse width 
0.3μs  
(Switch off STC・FTC） 

Transmitting 
power 12kW 

Indicator 

Display 15"LCD 

Display cell-size 1024×768 dot 

Distance accuracy 5m 

Range 3NM 



were recorded as well: AIS data, photos of the object ships and video footage around those ships, the bearings and 

distance from the object ships to the observation ship by visual observation and radar, and the type of the ships. 

 

3. Ship type identification system using AI technology 

3.1 System outline 

The ship type identification is performed 

using the Convolutional Neural Network 

(CNN) (2), (3) which is one technique of AI. 

CNN is a kind of the forward propagation 

neural networks that incorporates a deep layer 

connecting several convolution layers and 

pooling layers those consist of a middle layer. 

The AI determination consists of several 

programs. For the CNN developed, a model 

called “VGG-16” which is widely used in the 

program of the platforms such as the 

TensorFlow and the Keras that form the base.  

 

3.2 B scope data 

The objects of identification are the following data that include certain amounts of the ship of the same type 

among the radar reflection intensity distribution data (B scope data) of 232 times as mentioned in Section 2.2. 

The number of the object data are 51 from cargo ships including tankers, 51 from ferry boats, 46 from high-speed 

ships and passenger ships, and 54 from fishing boats both commercial and for pleasure. 

The data from other ship types were excluded this time as they did not exceed 20. The data was cross-checked 

with the record by visual observation and video images to confirm the ship type, and the number of data mentioned 

above was used for the identification using AI. 

The object data are the images of two-dimensional and three-dimensional radar reflection intensity distribution, 

and the number of object data are 46 to 54 for each of four ship types. Fig.3 shows the case of three-dimensional 

radar reflection intensity distribution. The horizontal direction of the figure indicates the angle, the longitudinal 

direction indicates the distance and the height indicates the reflection intensity. The reflection intensity is painted 

in red for the stronger cases and in blue for the weaker cases. The values of intensity are identical between Fig.3 

and Fig.4.The images of three-dimensional radar reflection intensity in Fig.3 are the distribution figures provided 

that the AD converted values of 900 or under are considered low intensity level and are converted as value zero. 

The three-dimensional radar reflection distribution in Fig.3 was reviewed, however, it looked differently depending 

on the observing points. Hence, we used the two-dimensional radar reflection distribution as the object of AI 

identification in this study and validated the two-dimensional images shown in Fig.4. 



 

3.3 Measures to improve identification  

The number of the observed data are far from enough as 46 to 54. In order to increase the number of learning 

data, mirror-reversed images were produced for data extension. 

As an additional measure to improve the 

identification with the small number of learning data, 

the “fine-tuning” was applied to the weight of 

coefficient which already learnt a large number of 

image data set called ImageNet. Fine learning is a 

technology to perform additional learning on a model 

that has already learnt data of certain field, and 

customize the model, making the model to 

accommodate to other field. 

The reason why fine-tuning is applied is, in CNN, 

the low-order and versatile features such as edges are 

extracted in the layer close to the input layer, 

meanwhile, the features specialized in the learning data of the task in this study are extracted in the layer close to 

the output layer. Fig.5 shows the flow of fine-tuning. In this study, as Fig.5 indicates, Block 1 to 3 of “VGG-16” 

network model are fixed and only Block 4 and 5 are relearnt. 

 

3.4 Correction of reflection intensity by benchmark distance 

The radar reflection intensity varies with the factors such as the sea condition, the distance and aspect angle to 



the object ship. Generally, the most fundamental radar equation is expressed by the formula (1), where pt is radar 

transmitting power, Gt is antenna gain, R is distance to the target, σ is radar cross-section (hereafter, RCS) of the 

target, λ is wavelength, and pr is radar receiving power. (Interference effect is not considered.) 

𝑝௥ ൌ
௣೟ൈீ೟

మൈఒమൈఙ

ሺସగሻయൈோర
…（1） 

The radar receiving power is shown by the following formula since the absolute value of the power setting 1mW 

as the base is expressed in common logarithm. 

𝑃ோ ൌ 10 ൈ 𝑙𝑜𝑔ଵ଴ሺ𝑝௥ሻ ൌ 10 ൈ 𝑙𝑜𝑔ଵ଴ሼ
௣೟ൈீ೟

మൈఒమൈఙ

ሺସగሻయൈோర
ሽ‥（2） 

In order to simplify the process in this study, the formula above is transformed into the following one where 

only the variation factor by the distance R is focused and the factors except for the distance R including RCS are 

presumed to be invariant. In this formula, the first term is invariant and the second is variant. 

𝑃ோ ൌ 10 ൈ 𝑙𝑜𝑔ଵ଴ ቄ
௣೟ൈீ೟

మൈఒమൈఙ

ሺସగሻయ
ቅ െ 10 ൈ 𝑙𝑜𝑔ଵ଴ሺ𝑅ସሻ…（3） 

The variation volume of the receiving power at the benchmark distance R is shown by the following formula, 

where the receiving power at a distance r1 is Pr1(dBm). 

𝑃ோ െ 𝑃௥ଵ ൌ െ10 ൈ 𝑙𝑜𝑔ଵ଴ሺ𝑅ସሻ ൅ 10 ൈ 𝑙𝑜𝑔ଵ଴ሺ𝑟1ସሻ ൌ 10 ൈ 𝑙𝑜𝑔ଵ଴ሺ
௥ଵర

ோర
ሻ ൌ 40 ൈ 𝑙𝑜𝑔ଵ଴ ቀ

௥ଵ

ோ
ቁ‥‥（4） 

 Meanwhile, the calibration test prior to the observation 

indicates a relation between the receiving power and AD 

converted values as shown in Fig.6. 

 This relation makes it possible to calculate the AD 

converted value at benchmark distance R, if the value 

gained by multiplying the slope coefficient 28.058 per 

1dB of the observed signal intensity with the value 

obtained by the formula (4) is added or deleted to all the 

observed AD converted values. 

In the observation this time, the average observation distance among 232 times was 1,112m, however, we set 

R=1,000m as the benchmark distance for easy understanding. The correction of the radar reflection intensity at 

this distance was performed on all object data. 

 

3.5 Correction of image to angle direction by benchmark distance 

The expansion to the angle direction of radar image (reflection intensity distribution) varies as the distance to 

the observation position varies even for the same ship. Meanwhile, the influence by the distance to the ship is 

considered small for the enlargement of the images to the distance direction by the pulse width and other factors. 



As a result, the shape of the image 

by angle and distance is to vary with 

the distance from the observation 

point and the object ship. This effect 

is generally called “Echo Paint” on 

the radar screen.(4) In order to 

correct the effect by Echo Paint, the 

expansion of the image to the angle 

direction was corrected by the ratio 

between the benchmark distance 

and the distance to the object ship. 

 The concept of this correction is explained in Fig.7. The circle on the left in the figure shows the radar PPI screen 

on which the images of the same ship change from ①(blue simulated image) at a far point, then ②(red simulated 

image) and to ③(yellow simulated image). This conceptually indicates that there is an enlargement effect on the 

image of the same ship when it nears. The distance from the ship to R1, R and R2 on the radar screen has a relation 

that the following formula shows. 

𝑅1 ൏ 𝑅 ൏ 𝑅2‥‥（5） 

According to the relation in the formula (5), scale correction to the angle direction of the images at the 

benchmark observation distance was performed. That is a reduced scale correction by magnification ratio of R1/R 

at the observation point ①, and an enlarged scale correction by ratio of R2/R at the point ②. 

As stated above, learning and verification data for CNN was prepared by correction to the angle direction of the 

images, as well as correction of the reflection intensity by the benchmark distance explained in Section 3.4. 

 

4. Result of review and consideration 

The ship type identification among four types was performed by the 5-fold cross-validation using the CNN 

learning indicated in Section 3.1. In the 5-fold cross-validation, all data are divided into 5 groups, and 4 groups 

out of 5 are used for learning and the remaining 1 is used for validation. This procedure is repeated 5 times using 

a different group in turn. 

The identification ratio by ship type 

among the models from 1 to 5 was 

validated for each of the 5-fold data in 

the procedure this time, and the 

average values of the validation result 

were summarized in Table 2. 

Table 2 summarizes the validation 

result by ship type in the confusion 

matrix. The cells in red placed 



diagonally show the identification ratio. Meanwhile, the remaining 3 cells in white for each type show the 

misidentification ratio. The identification ratio was 61.4% on average per ship type for 5 validation procedures. 

In this review, the identification ratio was not high enough. The following factors are considered to be the 

reasons and the countermeasures for each factor are required.  

(1)The number of observed data is not enough. 

(2)The range of data was clipped manually which may 

cause misidentification errors. 

(3)The emission number of sending pulses per rotation 

of the antenna shows small fluctuations due to the 

specification of the radar. This causes the errors by 

fluctuations. 

(4) As the data was collected aboard the observation ship 

underway, the motion of the ship may affect the radar 

reflection intensity. 

 

Fig.10 Validation results: Average of  

         accuracy evaluation of 5 times 

 

The accuracy of AI identification is indicated in Fig.9. 

Here, the fourth cross-validation result out of 5-fold 

cross-validation is shown as it marked the best accuracy. 

The “epoch” on the horizontal axis means the learning 

times and the “accuracy” on the vertical axis means 

identification accuracy. 

The “train” in blue is the accuracy with the data learnt 

and the “val” in orange is the accuracy with the data not 

in use for learning. The accuracy with the data learnt 

asymptotes 1.0 indicating that the learning is considered 

successful. On the other hand, the “val”, which is the 

 

Table 2 Result of identification by AI learning 

Unit of values in Table: % 

 
 

 

Fig.9 Validation results: Evaluation of 

accuracy by ship type 

 

Fig.11 Results of Validation check 

G1 Fishing
boat/pleasure
boat

G2 Cargo ship G3 Ferry boat
G4 High-speed
ship

G1 Fishing
boat/pleasure boat

78.2 10.9 1.8 9.1

G2 Cargo ship 0 58.2 20 21.8

G3 Ferry boat 0 24 56 20

G4 High-speed ship 15.5 4.4 26.6 53.3



result of validation with the data not in use for learning, asymptotes around 0.6 and the accuracy does not exceed 

this value. This is considered to be caused by the biased learning and poor generalization performance due to the 

small number of learning data as previously stated. 

Fig.10 indicates all the result of the 5-fold cross-validation showing the range of each validation. The result 

differs by the combination of the data for learning which is likely to be short in number. 

Fig.11 shows the shift of the loss function values (loss errors). As the loss errors gradually decrease, it is 

considered that the learning proceeds normally. 

 

5. Summary 

In this study, a possibility of ship type identification using AI was reviewed. The findings obtained are 

summarized as follows: 

(1) We have established an AI system to identify the ship type with the distribution images of the radar reflection 

intensity of small ships. 

(2) For the determination by the AI system, we have proposed a method to correct the intensity of the radar 

reflection intensity distribution at the benchmark distance. We also have proposed a method to correct the 

enlargement of the images. 

(3) We have obtained the observation data for one day in September, 2021 at the area from Kure Port to Hiroshima 

Port. Using these data, we have validated four types of small ships and obtained the identification ratio of 61.4%. 

(4) We have sorted the problems to solve for the practical use in the future such as small fluctuations in the number 

of sending pulse emission per rotation of the antenna. It is necessary to cope with the errors by the fluctuations. 

In order to solve the problems summarized as (1) to (4) in Chapter 4, it is needed to increase the number of data 

by the additional observation at a fixed shore point in the future. We also plan to improve the identification ratio 

by clipping data range automatically and by measuring the angle interval precisely with accurate counting of the 

scan pulse signals. 
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