吹氩流量对 RH 精炼过程钢液质量的影响研究

白旭旭*,张敏,袁开通,曾建华

攀钢集团研究院有限公司,攀枝花 617000

Study on the Effect of Argon Blowing Flow Rate on the Quality of Liquid

Steel in RH Refining Process

Bai Xuxu^{*}, Zhang Min, Yuan Kaitong, Zeng Jianhua

Pangang Group Research Institute Co., Ltd., Panzhihua, 617000, China

1. 前言

近年来,冶金工业发展迅速,对钢材品质的要求越来越高,对钢中有害元素的含量要求越来越低^[1-2]。 RH 真空精炼是提高产品质量、降低成本、保证连铸顺行的重要技术措施^[3]。许多冶金学者对 RH 精炼过程 做了大量的优化和研究,其中包括提高 RH 真空精炼过程中循环流量的研究^[4]。王晓冬^[5]等通过数值模拟 对不同充气量条件下的循环流量进行了预测,发现循环流量随充气量的增加而增加。耿佃桥^[6]等采用数值 模拟方法分析了不同工艺因素对 RH 精炼中夹杂物去除过程的影响。数值结果表明在浸渍管插入深度为 500 mm,真空度为 1kPa 的条件下,吹氩量达到 2000 L 时夹杂物去除率可达到 75%;吹氩量达到饱和值后, 进一步增大吹氩量不能继续促进 10µm 以上夹杂物的去除。艾新港[7]等通过现场试验研究了 RH 纯脱气时 间、吹氩量和初始 T.O 对脱氧和去除夹杂物的影响,发现 RH 提升气体量由 60m³/h 增大到 72m³/h,取得 良好的脱氧效果。因此,有必要采取合理的吹氩流量增大循环流量,提高 RH 的生产效率。本文针对攀钢 RH 精炼工序,开展了不同吹氩流量对钢液质量的影响研究。

2. 计算及方案

氩气作为驱动气体由插入管上升管吹入,带动钢液循环,吹氩流量的大小对循环流量有一定影响。钢 液在真空室内的循环流量计算公式如下:

U=3.8×10-3×D1.4×Q0.31×H0.5

其中,U:钢液循环量,t/min;Q:吹氩流量,L/min;D:插入管直径,cm;H:循环气体用循环管长度,cm。

RH 精炼炉基本参数如下:

1	表1RH 基本参数	攵			
Table 1 Basic parameters of RH					
D/cm	H/cm	钢水/t			
50	108	130			

经计算,当 RH 吹氩流量增大后,循环流量增大,在相同的 RH 处理时间下,吹氩流量越大,循环次数越多,越有利于钢水夹杂物上浮,提高钢液质量。

为验证上升管吹氩流量对 RH 精炼过程钢液质量的影响,主要开展了吹氩流量分别为 1200NL/min、1400NL/min、1600NL/min 三组工业试验,从而确定合适的吹氩流量,提升 RH 精炼效率。

3. 结果与分析

3.1. 过程 O 活度及 H 含量控制

从表中可以看出, RH 进站 a[O]大部分炉次分布在 12.1~20.5ppm 之间,大生产数据大部分分布在 13~17ppm。RH 出站 a[O]分布在 9.3~12.2ppm 之间,提升其体 1600NL/min 时, RH 出站 O 活度低于 1400ML/min。采用三种吹氩流量下, RH 出站氢均在 1ppm 以下。

表 2 冶炼数据

	Table 2 Smelting data								
编	RH 进站	RH 出站	RH 进站	RH 出站	RH 出站	提升气体流量/(NL·min ⁻			
号	[O]/ppm	[O]/ppm	T/°C	T/°C	[H]/ppm	1)			
1	12.1	10.7	1554	1527	0.73	1600			
2	15.1	9.3	1557	1529	0.89	1600			
3	14.6	11.8	1560	1530	0.88	1400			
4	20.5	12.2	1573	1528	0.74	1400			
5	15.3	9.7	1561	1536	0.77	1200			
6	16.6	10.9	1568	1541	0.76	1200			

3.2. 钢液成分及渣成分变化

对试验后炉次 C、Si、Mn、P、S 成分控制情况进行对比,如表 3 所示。可见,不同流量下冶炼,炉次 各成分控制稳定。

表 3 试验炉次成分控制情况/% Table 3 Composition control of test furnace/%

提升气体流量/ 编号 工序 С S Si Р Mn $(NL \cdot min^{-1})$ RH 进站 0.734 0.703 0.908 0.013 0.007 1 1600 RH出站 0.763 0.731 0.905 0.013 0.007 RH 进站 0.732 0.7080.917 0.016 0.0062 1600 RH出站 0.748 0.017 0.006 0.759 0.932 RH 进站 0.715 0.686 0.887 0.017 0.004 1400 3 RH出站 0.75 0.713 0.918 0.017 0.004 RH 进站 0.738 0.72 0.881 0.012 0.003 4 1400 RH出站 0.766 0.693 0.916 0.012 0.003 RH 进站 0.704 0.753 0.913 0.013 0.005 5 1200 RH 出站 0.762 0.724 0.914 0.013 0.005 RH 进站 0.745 0.72 0.903 0.0013 0.003 1200 6 RH出站 0.759 0.729 0.935 0.0014 0.003

对试验后炉次 R	H 精炼渣进出站	成分及碱度进行对比,	如表 4	所示。	可见,	RH 进站银	羽渣碱度分布	ī范
围在 2.04-2.61 之间,	经RH处理后,	渣碱度分布在 1.98-2.4	0之间,	与大生	三产渣店	成分相比,	变化不大。	
		表 4 RH 进出站精炼液	查成分					

Table 4 Composition of RH inlet and outlet refining slag									
位日	工庁		分析结果/%						D
姍丂	上庁	CaO	FeO	MgO	MnO	SiO ₂	Al ₂ O ₃	F-	ĸ
1	RH 进站	53.45	0.713	6.52	0.238	20.36	10.98	2.28	2.61
1	RH 出站	51.92	0.736	8.13	0.232	22.01	10.51	2.23	2.36
2	RH 进站	52.78	0.687	5.75	0.209	25.81	11.89	2.12	2.04
2	RH 出站	51.26	0.678	6.26	0.224	25.63	12.16	2.02	2.00
3	RH 进站	51.69	0.679	6.09	0.210	23.45	11.66	2.04	2.20
	RH 出站	50.01	0.703	7.36	0.256	24.77	11.71	1.94	2.02
4	RH 进站	55.01	0.781	6.79	0.179	22.99	10.12	1.96	2.39
	RH 出站	53.66	0.896	7.21	0.186	23.64	9.89	1.99	2.27
-	RH 进站	54.81	0.901	6.26	0.167	21.55	12.88	1.93	2.54
5	RH 出站	52.93	1.102	6.35	0.187	22.09	12.65	2.02	2.40
6	RH 进站	53.11	0.996	7.22	0.241	25.87	8.93	2.08	2.05
	RH 出站	51.23	1.038	9.03	0.239	25.92	7.26	1.94	1.98

3.3. 非金属夹杂物变化

对所取试样进行线切割、粗磨、细磨、精抛后,采用 Aspex 全自动夹杂物分析仪扫描 100 mm²视场内 尺寸为 1µm 以上有效夹杂物,对所得数据进行统计分析,确定钢中非金属夹杂物的成分并归类。

经统计发现 RH 进站夹杂物主要为为 MnS、CaO-SiO₂、Al₂O₃-SiO₂、CaO-Al₂O₃-SiO₂、CaO-Al₂O₃-SiO₂、CaO-Al₂O₃-SiO₂-MnO 和 Al₂O₃-SiO₂-MnO 五类夹杂,如图 1 所示。

图 1 RH 进站典型夹杂物 Fig.1 Typical inclusions in RH inlet

采用不同吹氩流量时,夹杂物出站的典型夹杂物类型主要为硅酸盐和钙铝酸盐,如图 2、3、4 所示。

图 2 RH 出站典型夹杂物(提升气体流量为 1200NL/min)

Fig.2 Typical inclusions at RH outlet (lift gas flow rate of 1200NL/min)

图 3 RH 出站典型夹杂物(提升气体流量为 1400NL/min) Fig.3 Typical inclusions at RH outlet (lift gas flow rate of 1400NL/min)

图 4 RH 出站典型夹杂物(提升气体流量为 1600NL/min) Fig.4 Typical inclusions at RH outlet (lift gas flow rate of 1600NL/min)

表 5 RH	出站卖杂物数量密度及平均直径
N J KII	山柏八小的妖王山及从十约五日

	fable 5 Quantity, dens	ity and average	diameter of in	nclusions at RH	outlet station
--	------------------------	-----------------	----------------	-----------------	----------------

编号	提升气体流量/(NL/min)	数量密度/(个·mm ⁻²)	平均直径/μm
1	1600	6.17	1.11
2	1600	4.32	1.53
3	1400	9.53	1.02
4	1400	3.41	1.66
5	1200	6.70	1.19
6	1200	9.16	1.45

对 RH 出站夹杂物数量密度和平均直径进行了统计分析,发现不同气体流量下 RH 出站夹杂物平均直 径均在 1.02-1.66µm 范围内,夹杂物数量密度在 3.41-9.53 个/mm²范围内,提升气体流量为 1200NL/min 时, 其数量密度相对较大。

统计分析了不同提升气体流量下 RH 出站时钢中夹杂物粒径分布,从表中可以看出,提升气体流量越 大,粒径 1-3μm 的夹杂物多占比例越多,3-6μm 的夹杂物多占比例越来越少,大于 10μm 的夹杂物多占比 例也增多,且大尺寸夹杂物基本为氧化物复合夹杂,可能是 3-6μm 的夹杂碰撞长大未来得及上浮导致。

炉号	坦升与体运导(NII/min)	夹杂物粒径分布(%)			
	旋开气体抓重(NL/min)	1-3µm	3-6µm	6-10µm	>10µm
1	1200	89.08	9.93	0.85	0.14
4	1400	92.89	5.95	0.83	0.33
5	1600	95.52	2.78	0.62	1.08

表 6 RH 出站夹杂物粒径分布数据 Table 6 Inclusion particle size distribution data of RH outlet station

图 5 RH 出站夹杂物粒径分布 Fig. 5 Inclusion particle size distribution at RH outlet

经过分析统计发现,提升气体流量增大为 1600NL/min 时,其夹杂物数量密度、平均直径与提升气体 为 1400NL/min、1200NL/min 相比,变化不大,但夹杂物粒径分布在 1-3μm 范围内所占比例最高,>10μm 的夹杂所占比例也最高,其 3-10μm 范围内的夹杂所占比例最少,可能是其碰撞长大未上浮导致。

通过分析可知,提升气体流量为 1600NL/min 时,其脱气能力与现有工艺相比,相差不大,但其出站 时 3μm 以下的夹杂物所占比例最高,钢中夹杂物的数量密度也较低,更有利于夹杂物的去除。

4. 结论

(1)循环流量随着吹氩流量的增加而增加。随着 RH 精炼对去除夹杂物要求的提高,需要制定合理的吹 氩流量以满足钢液精炼的要求。

(2)当上升管吹氩流量为 1600NL/min 时, RH 出站 3µm 以下的夹杂物所占比例最高,钢中夹杂物的数 量密度也较低,更有利于夹杂物的去除。

参考文献

[1] 潘秀兰, 李震, 王艳红等. 国内外纯净钢生产先进技术[J]. 炼钢, 2007, (01): 59-62.

[2] 魏军, 刘中柱, 蔡开科等. 炼钢—精炼—连铸工艺生产高碳钢的质量控制[J]. 炼钢, 2000, (03): 46-51.

[3] 刘浏,曾加庆. 纯净钢及其生产工艺的发展[J]. 钢铁, 2000, (03): 68-72.

[4] Zhang Z, Ma P, Dong J, et al. Effects of different RH degasser nozzle layouts on the circulating flow rate[J]. Materials, 2022, 15(23): 8476.

[5] 王晓冬, 王维娜. RH 真空精炼吹氩参数对循环流动影响的数值分析[J]. 真空科学与技术学报, 2009, 29(06): 682-685.

[6] 耿佃桥, 雷洪, 赫冀成. 不同工艺因素对 RH 精炼夹杂物去除过程的影响[J]. 钢铁, 2009, 44(10): 26-30.

[7] 艾新港,包燕平,吴华杰等. RH 工艺生产轴承钢脱氧和去除夹杂物研究[J]. 钢铁, 2009, 44(07): 43-46.