基于原料特征的数字化酸洗分级模型构建

Construction of Pickling Process Model Based on Strip Characteristics

来源:中文会议(科协)
中文摘要英文摘要

本文通过对实验钢表面氧化铁皮的微观形貌及物相组成的分析,基于酸洗失重和酸洗行为明确影响酸洗效率的主要因素,结合生产实践建立基于原料特征的酸洗分级数学模型。结果表明硅含量较高且卷取温度较高的带钢表面氧化铁皮厚度较高,同时在基体附近存在以硅元素为主的合金富集层,该富集层存在明显的对基体的钉扎作用,结合酸洗失重分析明确氧化铁皮厚度、物相组成和硅在基体附近的富集是影响酸洗效率的主要因素。以卷取温度和硅含量为变量建立酸洗分级数学模型,以模型计算值为酸洗难度…查看全部>>

In this paper,the morphology and phase composition of the oxide layer were analyzed,the main factors affecting the pickling efficiency were identified by the weight loss experiment and pickling behavior analysis,and the pickling process model based on oxide layer characteristics was established.The results show that the thickness increase as the silicon content and coiling temperature increase,there is an alloy enrichment layer mainly composed of Si near the…查看全部>>

评论

您当前未登录!去登录点击加载更多...

上述内容所涉观点、意见仅代表作者,与国家学术会议平台无关。

国家学术会议平台已取得上述相关成果授权,未经允许,任何单位和个人不得转载、复制或用作他途,一经发现,相关法律后果自行承担,国家学术会议平台保留向相关侵权人依法追究法律责任的权利。