基于多源数据并顾及森林类型的森林冠层高度反演

Forest canopy height inversion considering forest types based on multi-source data

来源:中文会议(科协)
中文摘要英文摘要

[目的]基于随机森林方法,通过ICESat-2的LiDAR数据与Sentinel-1的SAR数据、Sentinel-2的光学影像以及地形数据的协同构建针、阔、混三种不同森林类型对应的森林冠层高度估计模型,并对不同森林类型对应模型的精度进行验证和比较;同时,利用随机森林方法获取不同模型对应建模最优变量集及集合中各变量重要性得分,并对各变量在模型建立过程中发挥的作用进行定量地比较和分析。[方法]首先,在不同空间分辨率下,通过机载lidar反演得到的冠层高度验证ICESat-2 卫星的ATL08 产品提供的高度指标(RH95)的精度;随后,获取SRTM数据提供的高程和坡度数据、提取Sentinel-1 卫星的SAR数据提供的VV和VH变量、Sentinel-2卫星的光学影像提供的纹理特征、植被指数和生物物理特征、通过地理国情监测获取的研究区域内的针/阔/混森林覆盖信息,基于随机森林方法并利用以上参数构建出不区分森林类型和针/阔/混森林类型对应的冠层高度估计模型,并对模型的精度进行验证和比较;最后,利用随机森林方法获取不同森林类型对应的最优变量集,并对集合中各变量在模型构建过程中发挥的作用进行定量地比较和分析。[结果]在 250 m空间分辨率下,ATL08提供的RH95高度指数与机载lidar反演的冠层高度具有最好的一致性,对应的R和RMSE分别为 0.80和 1.98 m;不区分森林类型建立的冠层高度估计模型的反演精度低于按照针/阔/混森林类型分别建立的冠层高度估计模型的精度,以上四个模型对应的两个精度指标R和RMSE分别为:0.59、0.72、0.59、0.62和 3.68 m、3.15 m、3.37 m、3.26 m;在模型构建过程中,不同模型对应的最优变量集中包含变量种类及个数均不相同,且同一变量在不同集合中对应的重要性得分也存在明显差异。[结论]本研究通过多源数据的协同建立的森林冠层高度估计模型可以准确地获取大区域内空间连续的森林冠层高度信息,且根据不同森林类型分别建立的估计模型的精度明显高于未区分森林类型所建立估计模型的精度,证明了区分森林类型建立估计模型的必要性。不同森林类型对应的最优变量存在差异,但是基于光学数据提取的植被指数在每个集合中的重要得分之和均高于其他类型变量对应的重要性得分,证明了通过多源数据联合反演森林冠层高度时植被指数的重要性。

[Objective]Based on the Random Forest method,forest canopy height estimation models corresponding to coniferous forest,broadleaf forest and mixed forest were established by synergizing ICESat-2 lidar data,Sentinel-1 SAR data,Sentinel-2 optical images and topographic data,and then the accuracy of the established models for different forest types were validated and compared.Meanwhile,the optimal variable set corresponding to each forest type and importance score of each variable in the set was obtained with the help of Random Forest,and then the contribution of each optimal variable in the model establishment process was compared and analyzed quantitatively.[Method]Firstly,the accuracy of the RH95 height metric provided by ATL08 product of ICESat-2 satellite is validated by comparing with the canopy height derived from airborne lidar data at different spatial resolutions.Subsequently,elevation and slope data provided by SRTM product,VV and VH provided by Sentinel-1 SAR data,texture features,vegetation index and biophysical features provided by Sentinel-2 optical images were obtained.And then the cover information of coniferous/broadleaf/mixed forest within the study area was obtained through the NGCM(National Geographical Condition Monitoring Project)data.Based on the Random Forest method and the above derived parameters,the canopy height estimation models for whole forest(Not distinguishing forest types)and coniferous/broadleaf/mixed forest were established,and then the accuracy of each model was validated and compared.Finally,the optimal variable set corresponding to different forest types was obtained though Random Forest method and the contribution of each optimal variable in establishing the estimation model was compared and analyzed quantitatively.[Results]The RH95 height metric provided by ATL08 product has the best consistency with the canopy height derived from airborne lidar data at a spatial resolution of 250 mwith the R and RMSE of 0.80 and 1.98 m,respectively.The accuracy of canopy height estimation model established without distinguishing forest types is lower than that of estimation models established for coniferous/broadleaf/mixed forest.The two accuracy indicators R and RMSE corresponding to whole/coniferous/broadleaf/mixed forest are 0.59,0.72,0.59,0.62 and 3.68 m,3.15 m,3.37 m,3.26 m,respectively.In the process of model establishment,the optimal variable set corresponding to different models contains different types of variables and the number of variables within each set varies obviously,and there are also significant differences in the importance scores of the same variable in different sets.[Conclusion]Spatially continuous canopy height for a large area with high precision can be obtained by the estimation models established in this study by synergizing multi-source data.And the accuracy of estimation models considering forest types is significantly higher than that of estimation models established for whole forest,proving the necessity of establishing estimation models for different forest types.There are obvious differences in the optimal variables corresponding to different forest types,but the sum of importance scores of vegetation indices extracted from optical data in each set is higher than that of other types of variables,demonstrating the importance of vegetation indices in predicting forest canopy height through multi-source data.

席志龙;邢艳秋;陈贵珍;徐华东;

东北林业大学森林作业与环境研究中心 哈尔滨 150040##东北林业大学机电工程学院 哈尔滨 150040;东北林业大学森林作业与环境研究中心 哈尔滨 150040##东北林业大学机电工程学院 哈尔滨 150040;东北林业大学森林作业与环境研究中心 哈尔滨 150040##东北林业大学机电工程学院 哈尔滨 150040##自然资源部经济管理科学研究所(黑龙江省测绘科学研究所)哈尔滨 150081;东北林业大学机电工程学院 哈尔滨 150040;

第八届中国林业学术大会

ICESat-2 Sentinel-1 Sentinel-2 地形信息 森林类型 冠层高度 随机森林 最优变量

ICESat-2 Sentinel-1 Sentinel-2 topographic information forest type canopy height Random Forest optimal variable

1572-1589 / 18

评论

上述内容所涉观点、意见仅代表作者,与国家学术会议平台无关。

国家学术会议平台已取得上述相关成果授权,未经允许,任何单位和个人不得转载、复制或用作他途,一经发现,相关法律后果自行承担,国家学术会议平台保留向相关侵权人依法追究法律责任的权利。