降雨条件下蒙古栎和樟子松林地表死可燃物含水率预测方法的修正与比较
Influence of the Mixed Modes of Larch and Birch on Soil Faunal Community in Mountain Area of Northern Hebei,China
[目的]分析降雨条件对地表细小死可燃物含水率(FFMC)的影响,分别建立机器学习模型和传统模型对降雨条件下的可燃物含水率进行预测,并对所建立的预测模型进行评价和比较。[方法]选择东北地区典型阔叶树种蒙古栎和针叶树种樟子松,以其地表细小死可燃物作为研究对象,通过进行室内模拟降雨实验探究降雨对地表可燃物含水率的影响,分别采用直接估计法和卷积神经网络(CNN)构建预测模型,并结合野外实验数据对直接估计法所得模型进行修正,最终进行比较分析。[结果]与未经修正的直接估计法相比,修正后直接估计法的预测精度显著提高,R2由 0.85-0.94提高到 0.94-0.96;MAE由 9.18%~18.33%下降到 6.86%~10.74%,MRE由 3.97%~17.18%下降到 3.53%~14.48%。相比于卷积神经网络模型的R2在 0.90 以上,MAE在 8.11%以下,MRE在 8.87%以下,修正后直接估计法的预测精度较高。[结论]降雨条件下的预测结果表明,室内可燃物含水率呈对数增长的趋势;降雨和上一时刻可燃物含水率对预测模型具有显著影响,关系模型和非线性模型均能较好地预测室内降雨条件下的可燃物含水率。其中,修正后的直接估计法预测效果最好。
[Objective]Analyze the impact of rainfall conditions on the moisture content of surface fuel moisture content(FMC),establish machine learning models and traditional models to predict the moisture content of surface fuel under rainfall conditions,and evaluate and compare the established prediction models.[Method]Selecting the broad-leaved forest Quercus mongolica and coniferous forest Pinus sylvestris var.mongolica in northeast China,surface dead fine fuel as the research object,by indoor simulated rainfall experiment to explore the influence of rainfall for the surface fuel moisture content,combined with the direct estimation method to modify the fine fuel moisture content prediction model,finally using field data will be revised directly estimation method,the direct estimation method and convolution neural network(CNN)model is used in the comparison.[Result]Compared with the unmodified direct estimation method,the modified direct estimation method significantly improves the prediction accuracy,and the goodness of fit(R2)increases from 0.85-0.94 to 0.94-0.96;MAE decreased from 9.18%-18.33%to 6.86%-10.74%,MRE decreased from 3.97%-17.18%to 3.53%-14.48%.Compared with the convolutional neural network model,the R2 is above 0.90,the MAE is below 8.11%,and the MRE is below 8.87%,indicating high prediction accuracy.[Conclusion]Under the condition of rainfall simulation results show that indoor fuel moisture content in the form of logarithmic increase trend.Rainfall and last fuel moisture content have a significant impact on the fuel moisture content prediction model,and both the relational model and nonlinear model perform well in predicting fuel moisture content under indoor rainfall conditions.Comparing the three models,it can be concluded that the modified direct estimation method has the best prediction effect.
胡同欣;马灵感;高源廷;范佳乐;孙龙;
东北林业大学林学院 哈尔滨 150040;东北林业大学林学院 哈尔滨 150040;东北林业大学林学院 哈尔滨 150040;东北林业大学林学院 哈尔滨 150040;东北林业大学林学院 哈尔滨 150040;
Fine fuel moisture content Prediction models Direct estimation method Convolutional neural networks
2415-2432 / 18
评论