东北地区典型细小死可燃物含水率预测及 5种模型比较

A comparison of five models in predicting surface dead fine fuel moisture content of typical forests in Northeast China

来源:中文会议(科协)
中文摘要英文摘要

[目的]细小可燃物含水率(FFMC)是火灾风险评估中的一个关键因素,它对林火的蔓延和发展有着重要的影响。目前,基于机器学习对其进行预测的方法很多,但很少有人关注它们与传统模型的比较,这导致了机器学习模型在 FFMC 预测中的应用存在一定的局限性。[方法]以半小时为步长,对中国东北地区 4种典型森林的FFMC进行长期野外观测,分析FFMC的动态变化及其驱动因素,建立5种不同的预测模型,并对其性能进行了比较。[结果]总体来看,半物理模型(Nelson法,MAE为 0.566~1.332;Simard法,MAE为 0.457~1.250)表现最好,机器学习模型(随机森林模型,MAE为 1.666~1.933;广义加性模型,MAE为 2.534~4.485)表现稍差,线性回归模型(MAE为 2.798~5.048)表现最差。[结论]Simard法、Nelson法和随机森林模型表现出较好的性能,它们的MAE和RMSE几乎都小于 2%。此外,它还表明机器学习模型也可以准确地预测FFMC,它们具有很大的潜力,因为它们可以在未来通过引入新的变量和数据的方法来不断发展模型,提高准确度和适应性。本研究为今后FFMC预测的选择和发展提供了依据。

[Objective]The spread and development of wildfires are deeply affected by the fine fuel moisture content(FFMC),which is a key factor in fire risk assessment.At present,there are many new prediction methods based on machine learning,but few people pay attention to their comparison with traditional models,which leads to some limitations in the application of machine learning in predicting FFMC.[Method]Therefore,we made long-term field observations of surface dead FFMC by half-hour time steps of four typical forests in Northeast China,analyzed the dynamic change in FFMC and its driving factors.Five different prediction models were built,and their performances were compared.[Result]By and large,our results showed that the semi-physical models(Nelson method,MAE from 0.566 to 1.332;Simard method,MAE from 0.457 to 1.250)perform best,the machine learning models(Random Forest model,MAE from 1.666 to 1.933;generalized additive model,MAE from 2.534 to 4.485)perform slightly worse,and the Linear regression model(MAE from 2.798 to 5.048)performs worst.[Conclusion]The Simard method,Nelson method and Random Forest model showed great performance,their MAE and RMSE are almost all less than 2%.In addition,it also suggested that machine learning models can also accurately predict FFMC,and they have great potential because it can introduce new variables and data in future to continuously develop.This study provides a basis for the selection and development of FFMC prediction in the future.

范佳乐;胡同欣;任劲松;刘祺;孙龙;

东北林业大学 哈尔滨 150040;东北林业大学 哈尔滨 150040;内蒙古第一机械集团 包头 014030;辽宁省应急管理厅森林防灭火应急保障中心 沈阳 110041;东北林业大学 哈尔滨 150040;

第八届中国林业学术大会

细小可燃物含水率 预测模型 温度 相对湿度 随机森林 人工林 广义加性模型

fine fuel moisture content prediction model temperature relative humidity Random Forest plantations generalized additive model

2433-2449 / 17

评论

上述内容所涉观点、意见仅代表作者,与国家学术会议平台无关。

国家学术会议平台已取得上述相关成果授权,未经允许,任何单位和个人不得转载、复制或用作他途,一经发现,相关法律后果自行承担,国家学术会议平台保留向相关侵权人依法追究法律责任的权利。